Abstract:
This disclosure will describe a novel finding and make the claim for the first time on a group of old compounds and formulated new compounds. These compounds have superconducting property at high temperatures, i.e., 151K or higher. Several compounds were prepared, though not well-purified, at around middle of 1900s. Their chemical, structural, electric and magnetic properties were studied and reported but their superconducting property has not been known and has never been exploited because the idea of type-II superconductivity was not proposed at that time. Consequently, we claim this finding as an invention even though our invention is based on the studies of the compounds' electric and magnetic properties along with their crystallographic features from the previous publications. The experiments to further verify their high temperature superconductivity require the utilization of sophisticated facilities on synthesizing highly pure compounds and the deregulation from government security authorities on purchasing the starting materials.
Abstract:
A catalyst component for olefin polymerization is disclosed, which comprises a reaction product of the following components: (1) a spheric carrier; (2) a titanium compound; and optionally, (3) an electron donor, wherein the spheric carrier comprises a reaction product of at least the following components: (a) a magnesium halide represented by a general formula of MgX2-nRn, wherein X is independently chloride or bromide, R is a C1-C14 alkyl, a C6-C14 aryl, a C1-C14 alkoxy, or a C6-C14 aryloxy, and n is 0 or 1; (b) an alcohol compound; and (c) an epoxy compound represented by a general formula (I), wherein R2 and R3 are independently hydrogen, a C1-C5 linear or branched alkyl, or a C1-C5 linear or branched haloalkyl. When the catalyst of the invention is used in olefin polymerization, in particular in propylene polymerization, at least one of the following desired effects can be achieved: high polymerization activity of catalyst, high stereospecificity of catalyst, good hydrogen response of catalyst, high stereoregularity of polymer having high melt index, and low content of polymer fines.
Abstract:
A service integration platform system includes an interface configured to receive a service request initiated by an Independent Software Vendor (ISV) and one or more processors configured to authenticate the service request and in the event that the service request is authenticated, route the service request to an Internet Service Provider (ISP) providing the service to be further processed. The service request is routed to a deployment environment provided by the ISP in the event that the service request is received on a deployment Universal Resource Identifier (URI) corresponding to the deployment environment; the service request is routed to a test environment provided by the ISP in the event that the service request is received on a test URI corresponding to the test environment.
Abstract:
A magnesium halide adduct is provided, comprising at least one compound of the formula MgXY, at least one compound of the formula ROH, methanol, at least one modifying agent chosen from DOE and o-hydroxy benzoates, and optionally water. Also provided herein are a catalyst component comprising the magnesium halide adduct, a catalyst for olefin polymerization comprising the catalyst component; the respective processes for preparing the magnesium halide adduct and the catalyst component; use of the magnesium halide adduct for preparing the catalyst component, use of the catalyst component in a catalyst for olefin polymerization and use of the catalyst in olefin polymerization; and a process of olefin polymerization.
Abstract:
The present invention provides, in one embodiment, a process for cleaning a deposition chamber (100). The process includes a step (100) of forming a reactive plasma cleaning zone by dissociating a gaseous fluorocompound introduced into a deposition chamber having an interior surface and in a presence of a plasma. The process (100) further includes a step (120) of ramping a flow rate of said gaseous fluorocompound to move the reactive plasma cleaning zone throughout the deposition chamber, thereby preventing a build-up of localized metal compound deposits on the interior surface. Other embodiments advantageously incorporate the process (100) into a system (200) for cleaning a deposition chamber (205) and a method of manufacturing semiconductor devices (300).
Abstract:
The present invention provides, in one embodiment, a process for cleaning a deposition chamber (100). The process includes a step (100) of forming a reactive plasma cleaning zone by dissociating a gaseous fluorocompound introduced into a deposition chamber having an interior surface and in a presence of a plasma. The process (100) further includes a step (120) of ramping a flow rate of said gaseous fluorocompound to move the reactive plasma cleaning zone throughout the deposition chamber, thereby preventing a build-up of localized metal compound deposits on the interior surface. Other embodiments advantageously incorporate the process (100) into a system (200) for cleaning a deposition chamber (205) and a method of manufacturing semiconductor devices (300).
Abstract:
The present invention provides, in one embodiment, a method of manufacturing semiconductor devices. The method comprises transferring one or more substrate into a deposition chamber and depositing material layers on the substrate. The chamber has an interior surface. The method further includes, between the transfers, cleaning the deposition chamber using an in situ ramped cleaning process when material layer deposits in the deposition chamber reaches a predefined thickness. The in situ ramped cleaning process comprises forming a reactive plasma cleaning zone by dissociating a gaseous fluorocompound introduced into a deposition chamber in a presence of a plasma. The cleaning process further includes ramping a flow rate of the gaseous fluorocompound in a presence of the plasma to move the reactive plasma cleaning zone throughout the deposition chamber, thereby preventing a build-up of localized metal compound deposits on the interior surface.
Abstract:
A dissoluble oral tablet of calcium supplement and the method of making the product are provided. This calcium supplement comprises an exposure area and a coating covered area. The surface ratio between the exposure area and the coating covered area is about 1:1 to 1:12. The exposure area can be a hole, an opening, or their combination. The preferred samples contain about CaCO3 200-600 mg with MgCL2 50-150 mg or MgSO4 50-100 mg. The favorable CaCO3 tablet reaction with stomach acid is: CaCO3+2HCL=CaCL2+H2CO3=Ca+++2CL−+H2O+CO2 ↑. The CO2 is the natural bubble broker. The stomach HCL is the natural CaCL2 maker.
Abstract:
Disclosed is a system for fabricating a semiconductor device (100). A layer of cobalt (32) is deposited onto a silicon region (104, 106, 108) and annealed to form a cobalt silicide layer (118, 120, 122). Silicon layers (124, 126, 128) are selectively deposited onto the cobalt silicide layers (118, 120, 122). The semiconductor device (100) is annealed to form disilicide layers (130, 132, 134) from the cobalt silicide layers (118, 120, 122) and the silicon contained in silicon regions (104, 106, 108) and silicon layers (124, 126, 128).
Abstract:
The present invention relates to a foam, a process for preparing the foam and an article containing the foam. The foam contains a coupled propylene polymer and has a density in of from 9.6 to 801 kg/m3 and has either a foamability factor of more than 1.8 to less than 2.8 and an open cell content less than 20 percent, or a foamability factor of at least 2.8 and less than 15 and an open cell content of less than 50 percent. The process includes heating a coupled propylene polymer having a melt flow rate from 0.2 to 20 g/10 min and a melt strength of at least 39 cN to a molten state to produce a molten polymer material and mixing said molten polymer material with a blowing agent under conditions to produce a foamed material having a density in the range of from 9.6 to 801 kg/m3.
Abstract translation:本发明涉及泡沫,制备泡沫的方法和含有泡沫的物品。 该泡沫体含有一种偶联的丙烯聚合物,其密度为9.6至801kg / m 3,并且具有大于1.8至小于2.8的发泡性因子,开孔率低于20%,或 至少2.8和小于15,开孔含量小于50%。 该方法包括加热熔融流动速率为0.2-20g / 10min,熔体强度至少为39cN的熔融态丙烯聚合物,生成熔融聚合物材料,并将所述熔融聚合物材料与发泡剂 在生产密度在9.6至801kg / m 3范围内的发泡材料的条件下。