Abstract:
A method is provided for determining cellular electrical potentials using a state estimator. The state estimator is generated using at least an electrical source model and an electrical conduction model. One or more parameters or states of the state estimator are adjusted based on a measured electrocardiographic and/or a measured body-surface-potential signal. The electrical potential of one or more cells is determined based on the one or more adjusted parameters or states. In one aspect of the present technique, one or more representations of an organ comprising the one or more cells is generated such that the electrical potential or its deriving characteristic of the one or more cells is visually indicated.
Abstract:
Method and apparatus for determining alternans data of an ECG signal. The method can include determining at least one value representing at least one morphology feature of each beat of the ECG signal and generating a set of data points based on a total quantity of values and a total quantity of beats. The data points can each include a first value determined using a first mathematical function and a second value determined using a second mathematical function. The method can also include several preprocessing algorithms to improve the signal to noise ratio. The method can also include separating the data points into a first group of points and a second group of points and generating a feature map by plotting the first group of points and the second group of points in order to assess an alternans pattern of variation. The feature map can be analyzed by statistical tests to determine the significance difference between groups and clusters.
Abstract:
A system and method is provided for registering a representation of a probe with an image. One embodiment of a method comprises acquiring an image pertaining to an organ or structure inside a body and registering a representation of a probe which is inside the body with the image, the representation of the probe and the image being registered to substantially the same point in a bodily cycle.
Abstract:
The present disclosure includes a system and method of detecting LQTS in a patient by comparing a collected set of ECG data from the patient to a plurality of databases of collected ECG data. The plurality of databases will include a database containing previous ECGs from the patient, a known acquired LQTS characteristics database, and a known genetic LQTS characteristics database. Comparing the patients ECG to these databases will facilitate the detection of such occurrences as changes in QT interval from success of ECGs, changes in T-wave morphology, changes in U-wave morphology and can match known genetic patterns of LQTS. The system and method is sensitive to patient gender and ethnicity, as these factors have been shown to effect LQTS, and is furthermore capable of matching a QT duration to a database of drug effects. The system and method is also easily integrated into current ECG management systems and storage devices.
Abstract:
A method is provided for determining cellular electrical potentials using a state estimator. The state estimator is generated using at least an electrical source model and an electrical conduction model. One or more parameters or states of the state estimator are adjusted based on a measured electrocardiographic and/or a measured body-surface-potential signal. The electrical potential of one or more cells is determined based on the one or more adjusted parameters or states. In one aspect of the present technique, one or more representations of an organ comprising the one or more cells is generated such that the electrical potential or its deriving characteristic of the one or more cells is visually indicated.
Abstract:
The present disclosure includes a system and method of detecting LQTS in a patient by comparing a collected set of ECG data from the patient to a plurality of databases of collected ECG data. The plurality of databases will include a database containing previous ECGs from the patient, a known acquired LQTS characteristics database, and a known genetic LQTS characteristics database. Comparing the patients ECG to these databases will facilitate the detection of such occurrences as changes in QT interval from success of ECGs, changes in T-wave morphology, changes in U-wave morphology and can match known genetic patterns of LQTS. The system and method is sensitive to patient gender and ethnicity, as these factors have been shown to effect LQTS, and is furthermore capable of matching a QT duration to a database of drug effects. The system and method is also easily integrated into current ECG management systems and storage devices.
Abstract:
In a multi-tier patient monitoring data analysis system, an algorithm server is positioned as a middle tier between an acquisition device, such as a cardiograph or patient monitor that can be seen as a lower tier, and a storage device for a database, such as that of a central computer for a hospital or clinic that can be seen as an upper tier. The algorithm server gathers current data from the real time acquisition device and obtains previously stored ECG signal data from the database. The algorithm server contains ECG analysis algorithm(s) and runs one or more algorithms using the current and previously acquired ECG signal data. Analysis algorithms may also be run on the acquisition device. The system provides the rapid, extensive, and thorough ECG analysis that is critical to patient welfare.
Abstract:
Method and apparatus for determining alternans data of an ECG signal. The method can include determining at least one value representing at least one morphology feature of each beat of the ECG signal and generating a set of data points based on a total quantity of values and a total quantity of beats. The data points can each include a first value determined using a first mathematical function and a second value determined using a second mathematical function. The method can also include several preprocessing algorithms to improve the signal to noise ratio. The method can also include separating the data points into a first group of points and a second group of points and generating a feature map by plotting the first group of points and the second group of points in order to assess an alternans pattern of variation. The feature map can be analyzed by statistical tests to determine the significance difference between groups and clusters.
Abstract:
Method and apparatus for determining alternans data of an ECG signal. The method can include determining at least one value representing at least one morphology feature of each beat of the ECG signal and generating a set of data points based on a total quantity of values and a total quantity of beats. The data points can each include a first value determined using a first mathematical function and a second value determined using a second mathematical function. The method can also include several preprocessing algorithms to improve the signal to noise ratio. The method can also include separating the data points into a first group of points and a second group of points and generating a feature map by plotting the first group of points and the second group of points in order to assess an alternans pattern of variation. The feature map can be analyzed by statistical tests to determine the significance difference between groups and clusters.
Abstract:
A method of displaying a representation of a physiological signal produced by a patient. The method includes the acts of obtaining a portion of at least one physiological signal acquired from the patient, determining an area to display, and constructing a virtual image representing at least a portion of the patient. The virtual image including (M) polygonal areas. The method further includes transforming the obtained signal to a plurality of values, assigning each value to one of the (M) polygonal areas, assigning a visual characteristic to each polygonal area based in part on the assigned values, and displaying at least a portion of the virtual image including the assigned visual characteristics. The invention further provides a method of optimal feature selection for the classification of the physiological signals produced by a patient.