摘要:
A bone staple (10) for securing a first bone region (12A) to a second bone region (12B) includes a staple body (16) having a first leg section (18), a second leg section (20), and a connector section (22). The first leg section (18) is insertable into the first bone region (12A). The second leg section (20) is insertable into the second bone region (12B). The connector section (22) connects the first leg section (18) to the second leg section (20). The connector section (22) includes a deformable region (22A) that is movable from a first configuration (14A) in which the leg sections (18) (20) are spaced apart a first distance (24) and a second configuration (14B) in which the leg sections (18) (20) are spaced apart a second distance (26) that is less than the first distance (24). In one embodiment, compression of the deformable region (22A) causes the deformable region (22A) to move from the first configuration (14A) to the second configuration (14B). As a result of this design, the bone staple (10) can easily be moved from the first configuration (14A) to the second configuration (14B). The deformable region (22A) can be substantially square ring shaped and can define a region aperture (22D) that is substantially square in the first configuration (14A). Further, the deformable region (22A) can be substantially oval ring shaped and the region aperture (22D) can be generally rectangular shaped in the second configuration (14B).
摘要:
A bone staple (10) for securing a first bone region (12A) to a second bone region (12B) includes a staple body (16) having a first leg section (18), a second leg section (20), and a connector section (22). The first leg section (18) is insertable into the first bone region (12A). The second leg section (20) is insertable into the second bone region (12B). The connector section (22) connects the first leg section (18) to the second leg section (20). The connector section (22) includes a deformable region (22A) that is movable from a first configuration (14A) in which the leg sections (18) (20) are spaced apart a first distance (24) and a second configuration (14B) in which the leg sections (18) (20) are spaced apart a second distance (26) that is less than the first distance (24). In one embodiment, compression of the deformable region (22A) causes the deformable region (22A) to move from the first configuration (14A) to the second configuration (14B). As a result of this design, the bone staple (10) can easily be moved from the first configuration (14A) to the second configuration (14B). The deformable region (22A) can be substantially square ring shaped and can define a region aperture (22D) that is substantially square in the first configuration (14A). Further, the deformable region (22A) can be substantially oval ring shaped and the region aperture (22D) can be generally rectangular shaped in the second configuration (14B).
摘要:
Embodiments are directed to portable infusion devices, systems, and methods of using the same for dispensing materials. In some cases, the devices, systems and methods may be used for infusing a material such as medicament, e.g., insulin, into a body in need thereof.
摘要:
Embodiments are directed to portable infusion devices, systems, and methods of using the same for dispensing materials. In some cases, the devices, systems and methods may be used for infusing a material such as medicament, e.g., insulin, into a body in need thereof.
摘要:
This disclosure describes an improved ink seal between a print cartridge body and an inkjet printhead. In a preferred embodiment, a nozzle member containing an array of orifices has a substrate, having heater elements formed thereon, affixed to a back surface of the nozzle member. Each orifice in the nozzle member is associated with a single heating element formed on the substrate. The back surface of the nozzle member extends beyond the outer edges of the substrate. Ink is supplied from an ink reservoir to the orifices by a fluid channel within a barrier layer between the nozzle member and the substrate. The fluid channel in the barrier layer may receive ink fl owing around two or more outer edges of the substrate or may receive ink which flows through a hole in the center of the substrate. The nozzle member is adhesively sealed with respect to the ink reservoir body by forming an ink seal circumscribing the substrate, between the back surface of the nozzle member and the headland area of the print cartridge. This method and structure for a print cartridge headland for providing a seal directly between a nozzle member and an ink reservoir body has many advantages over other methods of providing a seal between a printhead and the ink reservoir body. One advantage is that such a structure reduces the occurrence of clogged nozzles during the adhesive sealing process. Another advantage is that there is a reduced occurrence of adhesive voids where the adhesive seal acts to encapsulate and protect the traces near the substrate which may come in contact with ink. A further advantage is that it is easier to control adhesive flow and bulges due to varying amounts and placement of adhesive. The above advantages provide reduced yield losses, and thus lower manufacturing costs, when manufacturing thermal inkjet print cartridges.