摘要:
A method including determining a first flare convolution based on a feature density of projected structures on a substrate layout, determining a second flare convolution based on a mask for a given substrate layout, determining a system flare variation by summing the first flare convolution and the second flare convolution, and determining a critical dimension variation based on the system flare variation.
摘要:
Improved atomic beam deflection and improved isotope separation, even in vapors, is proposed by substituting the A.C. Stark effect for the baseband chirp of the pushing beam in the prior proposal by I. Nebenzahl et al, Applied Physics Letters, Vol. 25, page 327 (September 1974). The efficiency inherent in re-using the photons as in the Nebenzahl et al proposal is retained; but the external frequency chirpers are avoided. The entire process is performed by two pulses of monochromatic coherent light, thereby avoiding the complication of amplifying frequency-modulated light pulses. The A.C. Stark effect is provided by the second beam of coherent monochromatic light, which is sufficiently intense to chirp the energy levels of the atoms or isotopes of the atomic beam or vapor. Although, in general, the A.C. Stark effect will alter the isotope shift somewhat, it is not eliminated. In fact, the appropriate choice of frequencies of the pushing and chirping beams may even relax the requirements with respect to the isotope absorption line shift for effective separation. That is, it may make the isotope absorption lines more easily resolvable.
摘要:
A method including determining a first flare convolution based on a feature density of projected structures on a substrate layout, determining a second flare convolution based on a mask for a given substrate layout, determining a system flare variation by summing the first flare convolution and the second flare convolution, and determining a critical dimension variation based on the system flare variation.
摘要:
A method and apparatus for phase-matching the output of a four-wave nonlinear optical mixing process is disclosed. The method produces phase-matching that is independent of variations in density of the conversion medium and extends over the entire frequency spectrum from the far infrared to the vacuum ultraviolet. The phase-matching is accomplished by adjustment of the frequencies of three input lasers so that the desired frequency is produced, the condition for two-photon resonance enhancement is met, and the phase-matching condition is satisfied.