摘要:
In a cellular type communication system a sector antenna 12 provides coverage of a sector with a relatively low receive gain. A multi-beam antenna 20 covers the same sector with a plurality of narrower beams 21', 22', 23' and 24' providing higher gain. A multi-beam antenna system 10 provides higher gain operation by selecting the one of the narrower beams 21', 22', 23' or 24' currently providing best reception of a signal transmitted by a user and coupling that selected beam to a system receiver 18. Beam selection is accomplished by sequentially coupling each narrow beam to a microprocessor based control unit 40 and storing samples of user signals as received in each narrow beam on a continuing repetitive basis. The stored samples are then analyzed in order to select the beam currently providing best reception. If, based on analysis of subsequent samples, a different one of beams 21', 22', 23' or 24' provides best reception (because of user movement or changing transmission conditions) that different beam is coupled to the system receiver 18. Spaced diversity reception is achieved by providing a second multi-beam antenna 20a and enabling the system receiver 18 to choose either of two, or both, inputs. Fail/safe operation is provided by coupling the sector antenna 12 to the system receiver 18 in the absence of coupling of a superior narrow beam signal.
摘要:
A whip antenna with switchable operative length provides seven band coverage from 30 to 90 MHZ. A coaxial choke section below a fixed upper antenna element is used for the highest frequency band. A series of four coaxial line sections are switchably coupled below the choke section to increase its operative length for operation in bands of successively lower frequency. One or more lumped constant non-coaxial transmission line sections are switchably coupled below the coaxial line sections for operation in the two lowest frequency bands. Dipole level gain is provided with low reflections loss. Increased height gain is provided by height of operative antenna elements employed at higher frequency bands.
摘要:
Low-protrusion array antennas enable reception of satellite signals by airliners in flight. Prior systems using a beam normal to an array face required a 70° array tilt for reception from a satellite at 20° elevation (i.e., tilt angle is complementary angle (90°−&bgr;) of satellite angle (&bgr;) of elevation). Compared to that 70° array tilt for reception from a satellite at 20° elevation, disclosed antennas require an array tilt of only 25° (90°−&bgr;−&agr;=25°). This is accomplished by providing a beam at a fixed acute angle (&agr;) to the array face (e.g. 45 degrees). A side-by-side linear array 16 of slotted waveguide radiator columns 18 provides a pencil beam at a fixed acute angle of 45° to array aperture, for example. By action of tilting motor 42 to mechanically tilt the array of slotted waveguides over a range of ±25° from horizontal, the beam can be scanned from 20° elevation to 70° elevation. Azimuth rotator motor 30 provides 360° beam pointing in azimuth. A television satellite can thus be tracked by an aircraft mounted antenna with only about a 5 inch above-fuselage protrusion.
摘要:
In a cellular type communication system a sector antenna 12 provides coverage of a sector with a relatively low receive gain. A multi-beam antenna 20 covers the same sector with a plurality of narrower beams 21', 22', 23' and 24' providing higher gain. A multi-beam antenna system 10 provides higher gain operation by selecting the one of the narrower beams 21', 22', 23' or 24' currently providing best reception of a signal transmitted by a user and coupling that selected beam to a system receiver 18. Beam selection is accomplished by sequentially coupling each narrow beam to a microprocessor based control unit 40 and storing samples of user signals as received in each narrow beam on a continuing repetitive basis. The stored samples are then analyzed in order to select the beam currently providing best reception.
摘要:
A dual-radiator whip antenna to operate over a 30 to 450 MHz frequency band includes a high frequency dipole above a low frequency monopole. The outer conductor (30) of a coaxial line is configured to operate as a monopole. Above the upper terminus of the outer conductor, an extension (32a) of the inner conductor (32) is configured as the upper arm of a dipole. An upper length of the outer conductor also functions as the lower dipole arm. With a single antenna port (13), a diplexer and other feed elements separate signals into high and low frequency bands respectively coupled to the dipole and monopole radiators. Increased high frequency range results from positioning of the center of radiation of the dipole above the monopole.