摘要:
To provide a hydrophobic modified polyrotaxane soluble in an organic solvent, and a crosslinked polyrotaxane using this. A hydrophobic modified polyrotaxane has a cyclic molecule, a linear molecule including the cyclic molecule with piercing through the cyclic molecule, and blocking groups which are placed at both end terminals of the linear molecule to prevent the cyclic molecule from leaving from the linear molecule. The cyclic molecule is cyclodextrin, and each of all or a part of the hydroxyl groups in the cyclodextrin is modified with a hydrophobic modification group.A crosslinked polyrotaxane is formed by combining this hydrophobic modified polyrotaxane and a polymer through the cyclic molecule.
摘要:
A coating material is blended preferably in an amount of 60 to 90% by mass relative to paint film forming components thereby to form a curable solvent-based topcoating material. The coating material includes an oleophilic polyrotaxane which includes a cyclic molecule, a linear molecule including the cyclic molecule with piercing through the cyclic molecule, and blocking groups which are placed at both end terminals of the linear molecule to prevent the cyclic molecule from leaving from the linear molecule, at least one of the above-mentioned liner molecule and the cyclic molecule having hydrophobic modification group.
摘要:
[Object] To provide a hydrophobic linear polyrotaxane molecule which is soluble in an organic solvent, and a crosslinked polyrotaxane using the same.[Solving Means] A hydrophobic linear polyrotaxane molecule has a cyclic molecule, a linear molecule including the cyclic molecule with piercing through the cyclic molecule, and blocking groups placed at both end terminals of the linear molecule to prevent the cyclic molecule from leaving from the linear molecule. The linear molecule is hydrophobic. The linear molecule is polycaprolactone and has a molecular weight ranging from 5,000 to 100,000. The cyclic molecule is α-cyclodextrin, β-cyclodextrin or γ-cyclodextrin.A crosslinked polyrotaxane is formed by combining the hydrophobic linear polyrotaxane molecule and a polymer through the cyclic molecule.
摘要:
[Object] To provide a coating material for a curable solvent-based topcoating material, having excellent marring resistance, chipping resistance, producing no crack and excellent in performances such as weatherability, stain resistance, adhesion and the like, and a curable solvent-type topcoating material using such a material.[Solving Means] A coating material is blended preferably in an amount of 60 to 90% by mass relative to paint film forming components thereby to form a curable solvent-based topcoating material. The coating material includes an oleophilic polyrotaxane which includes a cyclic molecule, a linear molecule including the cyclic molecule with piercing through the cyclic molecule, and blocking groups which are placed at both end terminals of the linear molecule to prevent the cyclic molecule from leaving from the linear molecule, at least one of the above-mentioned liner molecule and the cyclic molecule having hydrophobic modification group.
摘要:
To provide a coating material for a curable solvent-based topcoating material, having excellent marring resistance, chipping resistance, producing no crack and excellent in performances such as weatherability, stain resistance, adhesion and the like, and a curable solvent-type topcoating material using such a material.A coating material is blended preferably in an amount of 60 to 90% by mass relative to paint film forming components thereby to form a curable solvent-based topcoating material. The coating material includes an oleophilic polyrotaxane which includes a cyclic molecule, a linear molecule including the cyclic molecule with piercing through the cyclic molecule, and blocking groups which are placed at both end terminals of the linear molecule to prevent the cyclic molecule from leaving from the linear molecule, at least one of the above-mentioned liner molecule and the cyclic molecule having hydrophobic modification group.
摘要:
A process for producing a polyrotaxane in a high yield and at a satisfactory cost without using a large excess of a pseudopolyrotaxane and/or without using a large excess of an activated reagent. The process for polyrotaxane production comprises: an inclusion step in which a carboxylated polyethylene glycol which is a polyethylene glycol carboxylated at each end is mixed with cyclodextrin molecules to obtain a pseudopolyrotaxane which comprises cyclodextrin molecules which include the carboxylated polyethylene glycol in their cavities as if the cyclodextrin molecules are spitted with the carboxylated polyethylene glycol; and a capping step in which the pseudopolyrotaxane is reacted with capping groups having —NH2 or —OH to obtain a polyrotaxane terminated at each end by a —CO—NH-(capping group) or —CO—O-(capping group).
摘要:
There is provided a curable aqueous overcoating composition containing 1 to 90 mass % of hydrophilic polyrotaxane with respect to the coating film forming component, where the hydrophilic polyrotaxane has a cyclic molecule, a linear molecule included in the cyclic molecule in a skewered manner and blocking groups arranged on opposite ends of the linear molecule to prevent elimination of the cyclic molecule from the linear molecule and at least one of the linear molecule and the cyclic molecule has a hydrophilic modifying group.
摘要:
[Object] To provide a hydrophobic modified polyrotaxane soluble in an organic solvent, and a crosslinked polyrotaxane using this.[Solving Means] A hydrophobic modified polyrotaxane has a cyclic molecule, a linear molecule including the cyclic molecule with piercing through the cyclic molecule, and blocking groups which are placed at both end terminals of the linear molecule to prevent the cyclic molecule from leaving from the linear molecule. The cyclic molecule is cyclodextrin, and each of all or a part of the hydroxyl groups in the cyclodextrin is modified with a hydrophobic modification group.A crosslinked polyrotaxane is formed by combining this hydrophobic modified polyrotaxane and a polymer through the cyclic molecule.
摘要:
A material having crosslinked polyrotaxane which has further improved swelling properties, especially one having a crosslinked polyrotaxane which changes in swelling property with change in pH; and a material having a crosslinked polyrotaxane which is responsive especially at a high speed to a change of the surrounding electric field. The materials have a crosslinked polyrotaxane comprising at least two polyrotaxane molecules which each comprises cyclic molecules, a linear molecule which includes the cyclic molecules in cavities of cyclic molecules in a skewered manner, and capping groups, each of which locates at each end of the linear molecule in order to prevent the dissociation of the cyclic molecules, the least two polyrotaxane molecules having been bound to each other through a chemical bonding between the cyclic molecules thereof, wherein the cyclic molecules have hydroxy groups (—OHs) and part of the hydroxy groups are substituted with a group having an ionic group.
摘要:
[Object] To provide a coating material for a room temperature curable solvent-borne overcoating material having chipping resistance and not allowing occurrence of cracks, and a room temperature curable solvent-borne overcoating material using the same, the room temperature curable solvent-borne overcoating material being excellent in abrasion resistance and in performance such as weather resistance, contamination resistance and adhesion.[Solving Means] A coating material is formed of a lipophilic polyrotaxane including a cyclic molecule, a linear molecule piercing through the cyclic molecule to include it, and blocking groups disposed at both end terminals of the linear molecule to prevent departure of the cyclic molecule. In the lipophilic polyrotaxane, at least one of the linear molecule and the cyclic molecule has a hydrophobic modification group. A room temperature curable solvent-borne overcoating material is formed to contain the coating material preferably within a range of from 60 to 100% by mass relative to a film-forming component.