摘要:
The present invention relates to a heat-generating composition, comprising a hetero-structure nanomaterial which comprises (a) a first material comprising at least one component selected from the group consisting of a metal, a metal chalcogen, a metal pnicogen, an alloy and a multi-component hybrid structure thereof; and (b) a second material comprising at least one component selected from the group consisting of metal, metal chalcogen, metal pnicogen, alloy and the multi-component hybrid structure thereof; wherein the first material is enclosed in the second material; wherein at least one of the first material and the second material comprise a magnetic material. The specific loss power of the present nanomaterial is much higher than that of conventional nanomaterials (e.g., 40-fold higher than commercially accessible Feridex) and may be controlled by changing compositions or ratios of the first material and/or the second material. The heat-generating nanomaterial of the present invention may be used in a variety of application fields, for example cancer hyperthermia.
摘要:
The present invention relates to a method for controlling heat generation of a magnetic nanomaterial, comprising the steps of: (a) mixing (i) a nanomaterial precursor comprising a metal precursor material and a predetermined amount of a zinc precursor with (ii) a reaction solvent; and (b) preparing a zinc-containing magnetic nanomaterial from the mixture of step (a) comprising a zinc doped metal oxide nanomaterial matrix; and wherein a specific loss power of the zinc-containing magnetic nanomaterial is varied depending an amount of zinc to be doped, whereby the heat generation of the magnetic nanomaterial is controlled. In addition, the present invention relates to a heat-generating nanoparticle and a composition for hyperthermia. The present invention suggests a novel approach to improve a heat generation of a magnetic nanomaterial. According to the present invention, the specific loss power can be controlled by changing a zinc-content to be introduced into nanomaterials and therefore a composition for hyperthermia showing controlled heat generation potential can be successfully provided.
摘要:
The present invention relates to an MRI contrast agent that includes zinc-containing water-soluble metal oxide nanoparticles and has an improved contrast effect. The zinc-containing water-soluble metal oxide nanoparticles are characterized by addition of zinc to a matrix comprising the metal oxide nanoparticles or by substitution of metal in the matrix, resulting in the improved contrast effect of MRI. In addition, the zinc-containing metal oxide nanoparticles of the present invention include the MRI contrast agent t having hybrid structures of “zinc-containing metal oxide nanoparticle—biologically/chemically active material” in which the nanoparticle is conjugated with a bioactive material such as proteins, antibodies, and chemical materials.
摘要:
The present invention relates to an MRI contrast agent that includes zinc-containing water-soluble metal oxide nanoparticles and has an improved contrast effect. The zinc-containing water-soluble metal oxide nanoparticles are characterized by addition of zinc to a matrix comprising the metal oxide nanoparticles or by substitution of metal in the matrix, resulting in the improved contrast effect of MRI. In addition, the zinc-containing metal oxide nanoparticles of the present invention include the MRI contrast agent t having hybrid structures of “zinc-containing metal oxide nanoparticle—biologically/chemically active material” in which the nanoparticle is conjugated with a bioactive material such as proteins, antibodies, and chemical materials.
摘要:
The present invention relates to a heat-generating composition, comprising a hetero-structure nanomaterial which comprises (a) a first material comprising at least one component selected from the group consisting of a metal, a metal chalcogen, a metal pnicogen, an alloy and a multi-component hybrid structure thereof; and (b) a second material comprising at least one component selected from the group consisting of metal, metal chalcogen, metal pnicogen, alloy and the multi-component hybrid structure thereof; wherein the first material is enclosed in the second material; wherein at least one of the first material and the second material comprise a magnetic material. The specific loss power of the present nanomaterial is much higher than that of conventional nanomaterials (e.g., 40-fold higher than commercially accessible Feridex) and may be controlled by changing compositions or ratios of the first material and/or the second material. The heat-generating nanomaterial of the present invention may be used in a variety of application fields, for example cancer hyperthermia.