Abstract:
A method of identifying radar in a wireless device includes detecting an event corresponding to receipt of a signal by the wireless device. The event can include an analog to digital converter (ADC) saturation, a radio frequency (RF) saturation, and/or an ADC power high condition. Notably, the gain change in the wireless device is delayed for a first predetermined time period. Data preceding the event for the first predetermined time period can be buffered. A first low-resolution fast Fourier transform (FFT), wherein low-resolution FFTs are referred to as short FFTs, can be performed with the buffered data. The first short FFT can be processed. When results of the processing indicate the signal is radar, the radar can then be identified.
Abstract:
A configurable transmitter for a wireless communication system may include a flexible block coder, an IFFT block, an analog and RF block, and an antenna coupled in series. The flexible block coder may advantageously perform forward error correction and mapping of a data stream to generate a processed data vector. To perform these functions, the flexible block coder may include a data formatter and a multiplier. The data formatter may format the data stream into an output vector, whereas the multiplier may multiply the output vector by a configurable channel coding matrix to generate the processed data vector. The size of the output vector may be a reflection legacy compatibility and data rate. The size of the processed data vector is equal to a product of the output vector and an inverse of a coding rate. The channel coding matrix may be compressed.
Abstract:
Receivers typically detect the presence of a pilot tone, transmitted as part of an RF signal, and use the pilot tone as a reference to detect symbols in the received RF signal. However, improper synchronization between the transmitter and the receiver units can result in timing offset and carrier frequency offset in the digitized received RF signal, impair the orthogonality between OFDM sub-carriers, and cause inter-carrier interference. Phase offsets caused by carrier frequency offset and timing offset can also degrade receiver performance. Functionality can be incorporated to estimate the phase offset over multiple symbols. Estimating the phase offset over multiple symbols in the received RF signal can lower the error rate. Correcting the phase offset in the received RF signal can ensure accurate sampling of the received signal, accurate channel estimates, and accurate decoding of the digitized received signal. This can minimize receiver performance degradation.
Abstract:
In a multiple-input multiple-output communication system, a transmit symbol vector and a set of soft decision metrics may be estimated using a reduced complexity maximum likelihood (ML) detection method based on a receive symbol vector and a QR decomposition of a set of permuted channel matrices. The reduced complexity ML detection method may use a different permuted channel matrix to estimate each transmit symbol in a transmit symbol vector. A set of error distances may be calculated for the estimated transmit symbol vector, each error distance calculated choosing a different value from a signal constellation subset for a transmit symbol in the estimated transmit symbol vector. A soft decision metric may be calculated using the elements from the set of error distances. In some embodiments the transmit symbols of a transmit symbol vector and the soft decision metrics for each transmit symbol may be determined in parallel.
Abstract:
Improved methods of decoding data symbols of a high throughput (HT) data field in a mixed mode packet are provided. In one embodiment, first and second data symbols of the HT data field can be decoded using timing information derived from a legacy header of the mixed mode packet. In another embodiment, the first data symbol of the HT data field can be decoded using timing information derived from a legacy header of the mixed mode packet, whereas the second data symbol of the HT data field can be decoded using approximately half of the tones of the HT long training field in the mixed mode packet. Subsequent data symbols of the HT data field can be decoded using all tones of the HT long training field in the received mixed mode packet.
Abstract:
Functionality can be implemented for automatic gain control (AGC) in a wireless network device to determine whether to change the gain of the wireless network device based on determining the strength of an RF signal. At various time instants, the strength of the RF signal can be compared against different thresholds to determine the presence of and severity of the saturation of the RF front end. The gain settings can be adjusted based on comparing the strength of the RF signal with a set of thresholds. This can help the wireless network device receive RF signals with little or no distortion, and can minimize RF saturation, gain compression, false detection and other performance degradation at the wireless network device.
Abstract:
A method and apparatus for improving the accuracy of a round trip time (RTT) estimate between a first device and a second device are disclosed. The method involves calculating an acknowledgement correction factor and a unicast correction factor. These correction factors are used to compensate for symbol boundary time errors resulting from multipath effects.
Abstract:
After detecting the predetermined phase rotation, a receiver can advantageously remove any cyclic shifting delays (CSDs) from the mixed mode packet for each chain. Once any CSDs are removed, the receiver can perform timing offset estimation and decode the mixed mode packet. In another embodiment, a timing offset from a channel for a first chain without any CSDs can be estimated. Compensation for the timing offset in the first chain can then be performed. At this point, the CSDs from other chains can then be removed. After CSD removal, compensation for any timing offsets in the other chains can be performed using the timing offset in the first chain.
Abstract:
A first combination of frequency bands is selected for transmitting a first data packet, and a second, different combination of frequency bands is selected for transmitting a second data packet. A data stream is divided into a first set of data and a second set of data. The first set of data is allocated to the first combination of frequency bands, and the second set of data is allocated to the second combination of frequency bands.
Abstract:
A method and apparatus for improving the accuracy of a round trip time (RTT) estimate between a first device and a second device are disclosed. The method involves calculating an acknowledgement correction factor and a unicast correction factor. These correction factors are used to compensate for symbol boundary time errors resulting from multipath effects.