Abstract:
A pneumatic tire according to the invention includes a cap rubber 12 as a non-conductive rubber layer and a conductive layer 13 that extends from the tread surface to the bottom surface of the cap rubber 12 through the cap rubber 12. The conductive layer 13 has a main portion 13a extending from the tread surface toward the inner periphery of the tire, and plural branch portions 13b branched from the main portion 13a and extending toward the outer periphery of the tire. At least, one of the branch portions 13b is exposed to the tread surface.
Abstract:
A pneumatic tire has a tread rubber which is formed by a nonconductive rubber and includes a conductive portion. The conductive portion comprises a first, second, third and fourth conductive portions. The first conductive portion extends radially inward from the ground-contacting surface and reaches a cap portion. The second conductive portion is provided continuously in the first conductive portion, extends to one side in the tire width direction between the cap portion and a base portion, and reaches a carcass layer. The third conductive portion is connected to the second conductive portion, extends radially inward from an outer surface of the base portion, and reaches the bottom surface of the tread rubber. The fourth conductive portion is provided continuously in the third conductive portion, extends to another side in the tire width direction along the bottom surface, and reaches the carcass layer.
Abstract:
A tread rubber includes a cap portion formed by a nonconductive rubber, a base portion formed by a nonconductive rubber, and a conductive portion formed by a conductive rubber. A rubber hardness of the cap portion is higher than a rubber hardness of the base portion. The base portion is segmented in a tire width direction. A rubber forming the cap portion is filled in a recess at a segmented position. The conductive portion has a first portion which is provided in an outer side of the segmented position and extends to an inner side in the tire diametrical direction from the ground surface, and a second portion which is provided continuously in the first portion and extends in the tire width direction so as to run into the side surface or the bottom surface of the tread rubber.
Abstract:
An objective of the present invention is to provide a pneumatic tire whereby primarily rolling resistance is minimized and noise is minimized. This pneumatic tire tread rubber (5) comprises: a cap part (50) which is formed of non-conductive rubber and configures a grounding surface; a base part (51) which is disposed on the inner side of the cap part (50) in a tire radial direction (RD); and conductive parts (52) which are disposed in both of a pair of lateral end parts which are at ends of the cap (50) in a tire width direction, traverse the inner part of the cap (50) while avoiding a location which covers the grounding surface, and form shapes which connect the grounding surface with the bottom surface (50b) of the cap part (50) in the tire meridian cross-section. The conductive parts (52) are provided with extended sites (52b) which branch off outward to the tire width direction (WD) from conductive paths (52a) which connect the grounding surface with the bottom surface (50b) of the cap part (50). The conductive parts (52) are formed of a conductive rubber which has different rubber hardness from the non-conductive rubber which forms the cap part (50).
Abstract:
A pneumatic tire has a tread rubber which is formed by a nonconductive rubber and includes a conductive portion. The conductive portion comprises a first, second, third and fourth conductive portions. The first conductive portion extends radially inward from the ground-contacting surface and reaches a cap portion. The second conductive portion is provided continuously in the first conductive portion, extends to one side in the tire width direction between the cap portion and a base portion, and reaches a carcass layer. The third conductive portion is connected to the second conductive portion, extends radially inward from an outer surface of the base portion, and reaches the bottom surface of the tread rubber. The fourth conductive portion is provided continuously in the third conductive portion, extends to another side in the tire width direction along the bottom surface, and reaches the carcass layer.
Abstract:
A tread rubber includes a cap portion formed by a nonconductive rubber, a base portion formed by a nonconductive rubber, and a conductive portion formed by a conductive rubber. A rubber hardness of the cap portion is higher than a rubber hardness of the base portion. The base portion is segmented in a tire width direction. A rubber forming the cap portion is filled in a recess at a segmented position. The conductive portion has a first portion which is provided in an outer side of the segmented position and extends to an inner side in the tire diametrical direction from the ground surface, and a second portion which is provided continuously in the first portion and extends in the tire width direction so as to run into the side surface or the bottom surface of the tread rubber.
Abstract:
The present invention provides compounds represented by formula (I) and pharmaceutically acceptable salts and solvates thereof: wherein X represents CH or N; Z represents —O—, —NH— or —C(═O)—; R and R′ represent a hydrogen atom, hydroxyl, a halogen atom, optionally substituted alkyl, optionally substituted alkenyl optionally substituted alkoxy, amino, aminocarbonyl, or an optionally substituted heterocyclic group; and A represents an optionally substituted specific carbocyclic or heterocyclic group. The compounds according to the present invention have excellent TGFβ inhibitory activity.
Abstract:
An objective of the present invention is to provide a pneumatic tire whereby primarily rolling resistance is minimized and noise is minimized. This pneumatic tire tread rubber (5) comprises: a cap part (50) which is formed of non-conductive rubber and configures a grounding surface; a base part (51) which is disposed on the inner side of the cap part (50) in a tire radial direction (RD); and conductive parts (52) which are disposed in both of a pair of lateral end parts which are at ends of the cap (50) in a tire width direction, traverse the inner part of the cap (50) while avoiding a location which covers the grounding surface, and form shapes which connect the grounding surface with the bottom surface (50b) of the cap part (50) in the tire meridian cross-section. The conductive parts (52) are provided with extended sites (52b) which branch off outward to the tire width direction (WD) from conductive paths (52a) which connect the grounding surface with the bottom surface (50b) of the cap part (50). The conductive parts (52) are formed of a conductive rubber which has different rubber hardness from the non-conductive rubber which forms the cap part (50).
Abstract:
The present invention provides compounds represented by formula (I) and pharmaceutically acceptable salts and solvates thereof: wherein X represents CH or N; Z represents —O—, —NH— or —C(═O)—; R and R′ represent a hydrogen atom, hydroxyl, a halogen atom, optionally substituted alkyl, optionally substituted alkenyl optionally substituted alkoxy, amino, aminocarbonyl, or an optionally substituted heterocyclic group; and A represents an optionally substituted specific carbocyclic or heterocyclic group. The compounds according to the present invention have excellent TGFβ inhibitory activity.