Abstract:
Disclosed is a logic testing system that includes a decompressor and a tester in communication with the decompressor. The tester is configured to store a seed and locations of scan inputs and is further configured to transmit the seed and the locations of scan inputs to the decompressor. The decompressor is configured to generate a test pattern from the seed and the locations of scan inputs. The decompressor includes a first test pattern generator, a second test pattern generator, and a selector configured to select the test pattern generated by the first test pattern generator or the test pattern generated by the second test pattern generator using the locations of scan inputs.
Abstract:
Disclosed is a logic testing system that includes a decompressor and a tester in communication with the decompressor. The tester is configured to store a seed and locations of scan inputs and is further configured to transmit the seed and the locations of scan inputs to the decompressor. The decompressor is configured to generate a test pattern from the seed and the locations of scan inputs. The decompressor includes a first test pattern generator, a second test pattern generator, and a selector configured to select the test pattern generated by the first test pattern generator or the test pattern generated by the second test pattern generator using the locations of scan inputs.
Abstract:
A test output compaction arrangement and a method of generating control patterns for unknown blocking is herein disclosed. The specified bits in the control patterns, which when using linear feedback shift register (LFSR) reseeding determines control data volume and LFSR size, are preferably organized in a manner so as to balance the number of specified bits in the control patterns across test patterns.
Abstract:
Disclosed is a logic testing system that includes a decompressor and a tester in communication with the decompressor. The tester is configured to store a seed and locations of scan inputs and is further configured to transmit the seed and the locations of scan inputs to the decompressor. The decompressor is configured to generate a test pattern from the seed and the locations of scan inputs. The decompressor includes a first test pattern generator, a second test pattern generator, and a selector configured to select the test pattern generated by the first test pattern generator or the test pattern generated by the second test pattern generator using the locations of scan inputs.
Abstract:
The present invention is directed to a logic testing architecture with an improved decompression engine that compresses the seeds of a linear test pattern generator in a manner that is independent of the test pattern set.
Abstract:
Disclosed is a logic testing system that includes a decompressor and a tester in communication with the decompressor. The tester is configured to store a seed and locations of scan inputs and is further configured to transmit the seed and the locations of scan inputs to the decompressor. The decompressor is configured to generate a test pattern from the seed and the locations of scan inputs. The decompressor includes a first test pattern generator, a second test pattern generator, and a selector configured to select the test pattern generated by the first test pattern generator or the test pattern generated by the second test pattern generator using the locations of scan inputs.
Abstract:
Disclosed is a logic testing system that includes a decompressor and a tester in communication with the decompressor. The tester is configured to store a seed and locations of scan inputs and is further configured to transmit the seed and the locations of scan inputs to the decompressor. The decompressor is configured to generate a test pattern from the seed and the locations of scan inputs. The decompressor includes a first test pattern generator, a second test pattern generator, and a selector configured to select the test pattern generated by the first test pattern generator or the test pattern generated by the second test pattern generator using the locations of scan inputs.
Abstract:
Disclosed is a logic testing system that includes a decompressor and a tester in communication with the decompressor. The tester is configured to store a seed and locations of scan inputs and is further configured to transmit the seed and the locations of scan inputs to the decompressor. The decompressor is configured to generate a test pattern from the seed and the locations of scan inputs. The decompressor includes a first test pattern generator, a second test pattern generator, and a selector configured to select the test pattern generated by the first test pattern generator or the test pattern generated by the second test pattern generator using the locations of scan inputs.
Abstract:
A method includes inserting test points into a circuit for reducing the number of specified bits required for transition fault testing of the circuit by reducing the dependency of a second time-frame pattern of the circuit on a first time-frame pattern of the circuit. Preferably, inserting the test points includes controlling directly scan flip-flops of the circuit in the second time-frame requiring a number of scan flip-flops to be specified in the first time-frame for reducing the number of specified bits to detect transition faults.
Abstract:
Disclosed is an apparatus and method for testing an IC having a plurality of scan chains. A test input is transmitted over a tester channel to at least one scan chain during a time interval. Specifically, a memory element stores a first test input transmitted during a first time interval and a combinational circuit connected to the memory element and scan chain transmits to the scan chain one of a) the first test input and b) a second test input transmitted over the tester channel during a second time interval occurring after the first time interval.