Nonvolatile semiconductor device and method of manufacturing the same
    1.
    发明授权
    Nonvolatile semiconductor device and method of manufacturing the same 有权
    非易失性半导体器件及其制造方法

    公开(公告)号:US08796756B2

    公开(公告)日:2014-08-05

    申请号:US13755348

    申请日:2013-01-31

    IPC分类号: H01L29/792

    摘要: A charge storage layer interposed between a memory gate electrode and a semiconductor substrate is formed shorter than a gate length of the memory gate electrode or a length of insulating films so as to make the overlapping amount of the charge storage layer and a source region to be less than 40 nm. Therefore, in the write state, since the movement in the transverse direction of the electrons and the holes locally existing in the charge storage layer decreases, the variation of the threshold voltage when holding a high temperature can be reduced. In addition, the effective channel length is made to be 30 nm or less so as to reduce an apparent amount of holes so that coupling of the electrons with the holes in the charge storage layer decreases; therefore, the variation of the threshold voltage when holding at room temperature can be reduced.

    摘要翻译: 插入在存储栅电极和半导体衬底之间的电荷存储层形成为比存储栅电极的栅极长度或绝缘膜的长度短,以使电荷存储层和源极区域的重叠量成为 小于40nm。 因此,在写入状态下,由于在电荷存储层中局部存在的电子和空穴的横向的移动减少,因此可以降低保持高温时的阈值电压的变化。 此外,有效沟道长度为30nm以下,以减少空穴的表观量,使得电子与电荷存储层中的空穴的耦合减小; 因此,可以降低在室温下保持时的阈值电压的变化。

    NONVOLATILE SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
    2.
    发明申请
    NONVOLATILE SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME 失效
    非挥发性半导体器件及其制造方法

    公开(公告)号:US20090050955A1

    公开(公告)日:2009-02-26

    申请号:US12188412

    申请日:2008-08-08

    IPC分类号: H01L29/792 H01L21/336

    摘要: A charge storage layer interposed between a memory gate electrode and a semiconductor substrate is formed shorter than a gate length of the memory gate electrode or a length of insulating films so as to make the overlapping amount of the charge storage layer and a source region to be less than 40 nm. Therefore, in the write state, since the movement in the transverse direction of the electrons and the holes locally existing in the charge storage layer decreases, the variation of the threshold voltage when holding a high temperature can be reduced. In addition, the effective channel length is made to be 30 nm or less so as to reduce an apparent amount of holes so that coupling of the electrons with the holes in the charge storage layer decreases; therefore, the variation of the threshold voltage when holding at room temperature can be reduced.

    摘要翻译: 插入在存储栅电极和半导体衬底之间的电荷存储层形成为比存储栅电极的栅极长度或绝缘膜的长度短,以使电荷存储层和源极区域的重叠量成为 小于40nm。 因此,在写入状态下,由于在电荷存储层中局部存在的电子和空穴的横向的移动减少,因此可以降低保持高温时的阈值电压的变化。 此外,有效沟道长度为30nm以下,以减少空穴的表观量,使得电子与电荷存储层中的空穴的耦合减小; 因此,可以降低在室温下保持时的阈值电压的变化。