摘要:
Broad-area synthesis of aligned and densely-packed carbon nanotubes (CNT) is disclosed. CNT are repeatedly synthesized and then drawn together to locally and globally achieve increased packing densities. The process synthesizes an aligned, relatively sparse forest of CNT on a catalyzed sacrificial substrate. The catalyst is removed, thereby releasing the CNT but leaving them in place on the substrate. A liquid-induced collapse produces regions of more densely packed CNT and regions where no CNT remain. A fresh catalyst is deposited on the exposed regions of the substrate and a sparse forest of aligned CNT is regrown in these regions. The CNT also may form on the tops of the densified regions of CNT. The top-growth CNT may be removed or incorporated into the solid such that the solid is expanded axially. This process, e.g., growth then densification, is repeated to form a near-continuous solid of aligned and densely packed CNT.
摘要:
The invention relates to carbon nanotube arrays and methods for the preparation and modification of carbon nanotube arrays. The method includes synthesizing a plurality of carbon nanotubes on a substrate such that the carbon nanotubes are substantially vertically aligned and exposing the array to a plasma to change the topography of the array, change the structure or chemical nature of the individual nanotubes, remove at least a portion of the carbon nanotubes, and/or removing nanotubes to expose monodispserse groupings of nanotubes.
摘要:
The invention relates to carbon nanotube arrays and methods for the preparation of carbon nanotube arrays. The carbon nanotube arrays include an aligned carbon nanotube array, wherein at least one of the ends of the carbon nanotube array includes a coating layer that is infused into the carbon nanotube array.
摘要:
Broad-area synthesis of aligned and densely-packed carbon nanotubes (CNT) is disclosed. CNT are repeatedly synthesized and then drawn together to locally and globally achieve increased packing densities. The process synthesizes an aligned, relatively sparse forest of CNT on a catalyzed sacrificial substrate. The catalyst is removed, thereby releasing the CNT but leaving them in place on the substrate. A liquid-induced collapse produces regions of more densely packed CNT and regions where no CNT remain. A fresh catalyst is deposited on the exposed regions of the substrate and a sparse forest of aligned CNT is regrown in these regions. The CNT also may form on the tops of the densified regions of CNT. The top-growth CNT may be removed or incorporated into the solid such that the solid is expanded axially. This process, e.g., growth then densification, is repeated to form a near-continuous solid of aligned and densely packed CNT.