摘要:
The present invention relates to a system and method for automated or “robotic” application of hardfacing to the surface of a steel-toothed cutter of a rock bit. In particular, the system incorporates a grounded adapter plate and chuck mounted to a robotic arm for grasping and manipulating a rock bit cutter beneath an electrical or photonic energy welding source, such as a plasma arc welding torch manipulated by a positioner. In this configuration, the torch is positioned substantially vertically and oscillated along a horizontal axis as the cutter is manipulated relative along a target path for the distribution of hardfacing. Moving the cutter beneath the torch allows more areas of more teeth to be overlayed, and allows superior placement for operational feedback, such as automatic positioning and parameter correction. In the preferred embodiment, sensors provide data to the control system for identification, positioning, welding program selection, and welding program correction. The control system, aided by data from the sensors, manipulates the robotically held cutter while controlling the operation and oscillation of the torch.
摘要:
The present invention relates to a system and method for automated or “robotic” application of hardfacing to the surface of a steel-toothed cutter of a rock bit. In particular, the system incorporates a grounded adapter plate and chuck mounted to a robotic arm for grasping and manipulating a rock bit cutter beneath an electrical or photonic energy welding source, such as a plasma arc welding torch manipulated by a positioner. In this configuration, the torch is positioned substantially vertically and oscillated along a horizontal axis as the cutter is manipulated relative along a target path for the distribution of hardfacing. Moving the cutter beneath the torch allows more areas of more teeth to be overlayed, and allows superior placement for operational feedback, such as automatic positioning and parameter correction. In the preferred embodiment, sensors provide data to the control system for identification, positioning, welding program selection, and welding program correction. The control system, aided by data from the sensors, manipulates the robotically held cutter while controlling the operation and oscillation of the torch.
摘要:
A rotary cone earth boring bit has at least one bit leg with a cone retaining ball passage that intersects an outer surface of the bit leg and is closed by a ball plug. An upwardly curved lower hardfacing bead is on the outer surface of the bit leg at least partially below the ball plug. A downwardly curved upper hardfacing bead is on the outer surface of the bit leg at least partially above the ball plug. The upper hardfacing bead has leading and trailing ends that join the lower hardfacing bead. The upper and lower hardfacing beads define a generally elliptical perimeter surround the ball plug. At least one transverse bead is above the upper hardfacing bead and leads generally upwardly and circumferentially from a leading edge of the bit leg to a trailing edge of the bit leg.
摘要:
A rotary cone earth boring bit has at least one bit leg with a cone retaining ball passage that intersects an outer surface of the bit leg and is closed by a ball plug. An upwardly curved lower hardfacing bead is on the outer surface of the bit leg at least partially below the ball plug. A downwardly curved upper hardfacing bead is on the outer surface of the bit leg at least partially above the ball plug. The upper hardfacing bead has leading and trailing ends that join the lower hardfacing bead. The upper and lower hardfacing beads define a generally elliptical perimeter surround the ball plug. At least one transverse bead is above the upper hardfacing bead and leads generally upwardly and circumferentially from a leading edge of the bit leg to a trailing edge of the bit leg.