Abstract:
A light receiving device is disclosed by which a reception characteristic of a light receiving system can be improved. The light receiving device includes a photoelectric conversion element for receiving a light signal and performing photoelectric conversion of the light signal, and a data detection section for using an decision level for the light signal received by the photoelectric conversion element to detect modulation data included in the light signal. The light received device further includes an decision level control section for feedforward controlling the decision level to be used by the data detection section based on a level of the received light signal.
Abstract:
An optical transceiver module is constituted so as to have an optical transmission module, an optical receiving module, a drive circuit board for driving the optical transmission module and the optical receiving module, and short-circuit means which induces an electrical short circuit between housings of the respective modules or induces an electrical short circuit between ground (GND) terminals of the respective modules on the module sides with respect to the drive circuit board. As a result, in the optical transceiver module, stray capacitance and stray inductance in lead pins, housings, and internal components of optical devices, such as an LD and a PD, are removed, thereby suppressing fluctuations in the potential (GND) of an LD housing which arise during high-frequency driving operation, as well as considerably suppressing electrical crosstalk between the transmission and receiving modules.
Abstract:
An optical reception circuit and an identification level controlling method for an optical reception circuit are disclosed wherein reception sensitivity degradation arising from transmission waveform degradation by chromatic dispersion can be suppressed. The optical reception circuit includes a photoelectric converter for converting reception light into an electric signal, a pre-amplifying unit for amplifying the electric signal, a main amplifier for amplifying an output of the pre-amplifying unit, a monitor for monitoring the output of the pre-amplifying unit, and a controller for controlling an identification level in the main amplifier based on an output of the monitor. The monitor includes a limiter amplifier for amplifying the output of the pre-amplifying unit, and an average value detector for detecting a time average value of an output amplitude of the limiter amplifier.
Abstract:
An optical reception circuit and an identification level controlling method for an optical reception circuit are disclosed wherein reception sensitivity degradation arising from transmission waveform degradation by chromatic dispersion can be suppressed. The optical reception circuit includes a photoelectric converter for converting reception light into an electric signal, a pre-amplifying unit for amplifying the electric signal, a main amplifier for amplifying an output of the pre-amplifying unit, a monitor for monitoring the output of the pre-amplifying unit, and a controller for controlling an identification level in the main amplifier based on an output of the monitor. The monitor includes a limiter amplifier for amplifying the output of the pre-amplifying unit, and an average value detector for detecting a time average value of an output amplitude of the limiter amplifier.
Abstract:
A light receiving device is disclosed by which a reception characteristic of a light receiving system can be improved. The light receiving device includes a photoelectric conversion element for receiving a light signal and performing photoelectric conversion of the light signal, and a data detection section for using an decision level for the light signal received by the photoelectric conversion element to detect modulation data included in the light signal. The light received device further includes an decision level control section for feedforward controlling the decision level to be used by the data detection section based on a level of the received light signal.