Abstract:
A method for forming micromachined devices out of a polycrystalline silicon substrate using deep reactive ion etching to form the micromachined device. The method comprises the steps of providing a bulk material substrate of polycrystalline silicon, and etching the bulk material using deep reactive ion etching to form the micromachined device. The present invention also includes a method for forming a micromachined device comprising the steps of providing a first layer of single crystal silicon and etching a first set of elements on the first layer. The method further includes the steps of providing a second layer of single crystal silicon, etching a second set of elements on the second layer, and joining the first and second layers together such that the crystal planes of the first layer and the second layer are misaligned and such that the first set and the second set of elements are properly aligned.
Abstract:
A pressure sensor for measuring the differential pressure of a first and a second fluid. The sensor includes a housing having an internal opening, a first diaphragm disposed in the opening and exposed to the first fluid, and a second diaphragm disposed in the opening and exposed to the second fluid. The first diaphragm and the second diaphragm are each made of a conductive material and coupled together such that the differential pressure of the first and second fluids deflects the first and second diaphragms in the same direction. The deflection of the first and second diaphragms can be sensed to determine the differential pressure.
Abstract:
A generally flexible strain gage comprising a strain sensing element, and a generally flexible substrate supporting the strain sensing element. The strain sensing element is made of single crystal or polycrystalline semiconducting material. The invention also includes a method for forming a generally flexible strain gage comprising the step of selecting a wafer having a portion of a base material and portion of a single crystal or polycrystalline semiconducting material located thereon. The method further comprises the steps of etching a strain sensing element out of the semiconducting material and forming a generally flexible substrate onto said sensing element.