摘要:
Embodiments as described herein provide a method for depositing barrier layers and tungsten materials on substrates. In one embodiment, a method for depositing materials is provided which includes forming a barrier layer on a substrate, wherein the barrier layer contains a cobalt silicide layer and a metallic cobalt layer, exposing the barrier layer to a soak gas containing a reducing gas during a soak process, and forming a tungsten material over the barrier layer. In one example, the barrier layer may be formed by depositing a cobalt-containing material on a dielectric surface of the substrate and annealing the substrate to form the cobalt silicide layer from a lower portion of the cobalt-containing material and the metallic cobalt layer from an upper portion of the cobalt-containing material.
摘要:
Embodiments are provided for a method to deposit barrier and tungsten materials on a substrate. In one embodiment, a method provides forming a barrier layer on a substrate and exposing the substrate to a silane gas to form a thin silicon-containing layer on the barrier layer during a soak process. The method further provides depositing a tungsten nucleation layer over the barrier layer and the thin silicon-containing layer during an atomic layer deposition process and depositing a tungsten bulk layer on the tungsten nucleation layer during a chemical vapor deposition process. In some examples, the barrier layer contains metallic cobalt and cobalt silicide, or metallic nickel and nickel silicide. In other examples, the barrier layer contains metallic titanium and titanium nitride, or metallic tantalum and tantalum nitride.
摘要:
Methods and apparatus are provided for forming a metal or metal silicide barrier layer. In one aspect, a method is provided for processing a substrate including positioning a substrate having a silicon material disposed thereon in a substrate processing system, depositing a first metal layer on the substrate surface in a first processing chamber, forming a metal silicide layer by reacting the silicon material and the first metal layer, and depositing a second metal layer in situ on the substrate in a second processing chamber. In another aspect, the method is performed in an apparatus including a load lock chamber, the intermediate substrate transfer region including a first substrate transfer chamber and a second substrate transfer chamber, a physical vapor deposition processing chamber coupled to the first substrate transfer chamber, and a chemical vapor deposition chamber coupled to the second substrate transfer chamber.
摘要:
Embodiments as described herein provide a method for depositing barrier layers and tungsten materials on substrates. In one embodiment, a method for depositing materials is provided which includes forming a barrier layer on a substrate, wherein the barrier layer contains a cobalt silicide layer and a metallic cobalt layer, exposing the barrier layer to a soak gas containing a reducing gas during a soak process, and forming a tungsten material over the barrier layer. In one example, the barrier layer may be formed by depositing a cobalt-containing material on a dielectric surface of the substrate and annealing the substrate to form the cobalt silicide layer from a lower portion of the cobalt-containing material and the metallic cobalt layer from an upper portion of the cobalt-containing material.
摘要:
A sputtering target for a sputtering chamber comprises a backing plate with a sputtering plate mounted thereon. In one version, the backing plate comprises a circular plate having a front surface comprising an annular groove. The sputtering plate comprises a disk comprising a sputtering surface and a backside surface having a circular ridge that is shaped and sized to fit into the annular groove of the backing plate.
摘要:
A sputtering target for a sputtering chamber comprises a backing plate with a sputtering plate mounted thereon. In one version, the backing plate comprises a circular plate having a front surface comprising an annular groove. The sputtering plate comprises a disk comprising a sputtering surface and a backside surface having a circular ridge that is shaped and sized to fit into the annular groove of the backing plate.