Abstract:
A radar wave sensing apparatus including a rotation element, a nanosecond pulse near-field sensor and a control unit is provided. The nanosecond pulse near-field sensor emits an incident radar wave and receives a reflection radar wave of the incident radar wave hitting on a surface of the rotation element to obtain a repetition frequency variation of the reflection radar wave corresponding to the incident radar wave. The control unit calculates a vibration of the rotation element according to the repetition frequency variation.
Abstract:
A radar wave sensing apparatus including a rotation element, a nanosecond pulse near-field sensor and a control unit is provided. The nanosecond pulse near-field sensor emits an incident radar wave and receives a reflection radar wave of the incident radar wave hitting on a surface of the rotation element to obtain a repetition frequency variation of the reflection radar wave corresponding to the incident radar wave. The control unit calculates a vibration of the rotation element according to the repetition frequency variation.
Abstract:
A UWB antenna for transportation means comprises a metallic screen, a dielectric substrate and a rectangular printed metallic patch. The dielectric substrate is disposed on the printed metallic patch. The printed metallic patch is disposed on the dielectric substrate, and has a horizontal trench gap and two vertical trench gaps. The horizontal trench gap is parallel to the long side of the rectangular printed metallic patch, and the vertical trench gaps respectively extend upward from each end of the horizontal trench gap to form two resonance contours.
Abstract:
A method for predicting drowsiness is disclosed. By obtaining average heart beat rate values of a driver, and according to the characteristics of the heart beat rate values over a period of time, the method is utilized to determine whether the human being is going to sleep. The method comprises the following steps: detecting a heart beat rate of a driver; calculating a curve of the heart beat rate average during a time interval of X minutes; determining an accumulated length of duration during which the calculated linear regression slope values are smaller than the predetermined slope value Z; determining whether the accumulated length of duration is greater than a time threshold T to generate a drowsiness detecting result; and determining whether to raise an alarm based on the drowsiness detecting result.
Abstract:
A method for predicting drowsiness is disclosed. By obtaining average heart beat rate values of a driver, and according to the characteristics of the heart beat rate values over a period of time, the method is utilized to determine whether the human being is going to sleep. The method comprises the following steps: detecting a heart beat rate of a driver; calculating a curve of the heart beat rate average during a time interval of X minutes; determining an accumulated period of time during which the slope values of the linear regression equations are smaller than the predetermined slope value Z; determining whether the length of the accumulated period of time is greater than a time threshold T to generate a drowsiness detecting result; and determining whether to raise an alarm based on the drowsiness detecting result.