摘要:
Methods, systems, computer programs, etc., determine the required number of decoupling capacitors, and approximate locations for the decoupling capacitors, for a region of an integrated circuit. Switching elements of the region are entered into a simulation program running on a computerized device. Also, a power distribution model of the region is entered into the simulation program, and a power-supply voltage compression target is entered into the simulation program. These methods, systems, etc., generate an upper number of decoupling capacitors required to satisfy the compression target when all the switching elements concurrently switch. For each switching element, the methods, systems, etc., generate a specific number of decoupling capacitors required to satisfy the compression when only the element switches, calculate a fraction of the specific number to the upper number, assign the fraction of the total number of decoupling capacitors to each switching circuit element, and place the fraction of the total number of decoupling capacitors in electrical proximity to the element.
摘要:
A system and method for abating a simultaneous flow of silane and arsine contained in an exhaust gas of DRAM processing chamber (12). The system includes a CVD abatement apparatus (20) and a resin-type absorber (22). The CVD abatement apparatus comprises an enclosure (24) that defines a chamber (26) for receiving the exhaust gas. The enclosure contains a plurality of removable substrates (32) arranged as a series of baffles inside the enclosure. As the exhaust gas flows through the CVD abatement apparatus, the silicon within the silane is deposited as a film upon the substrates by chemical vapor deposition. The arsine continues to flow through the CVD apparatus to the absorber where it is adsorbed by the resin contained therein. After the film has reached a particular thickness, the substrates can be removed from the enclosure, cleaned of the film and returned to the enclosure for further use.
摘要:
A system for abating a simultaneous flow of silane and arsine contained in an exhaust gas of DRAM processing chamber. The system includes a CVD abatement apparatus and a resin-type adsorber. The CVD abatement apparatus comprises an enclosure that defines a chamber for receiving the exhaust gas. The enclosure contains a plurality of removable substrates arranged as a series of baffles inside the enclosure. As the exhaust gas flows through the CVD abatement apparatus, the silicon within the silane is deposited as a film upon the substrates by chemical vapor deposition. The arsine continues to flow through the CVD apparatus to the adsorber where it is adsorbed by the resin contained therein. After the film has reached a particular thickness, the substrates can be removed from the enclosure, cleaned of the film and returned to the enclosure for further use.
摘要:
Methods, systems, computer programs, etc., determine the required number of decoupling capacitors, and approximate locations for the decoupling capacitors, for a region of an integrated circuit. Switching elements of the region are entered into a simulation program running on a computerized device. Also, a power distribution model of the region is entered into the simulation program, and a power-supply voltage compression target is entered into the simulation program. These methods, systems, etc., generate an upper number of decoupling capacitors required to satisfy the compression target when all the switching elements concurrently switch. For each switching element, the methods, systems, etc., generate a specific number of decoupling capacitors required to satisfy the compression when only the element switches, calculate a fraction of the specific number to the upper number, assign the fraction of the total number of decoupling capacitors to each switching circuit element, and place the fraction of the total number of decoupling capacitors in electrical proximity to the element.
摘要:
A system and method for abating a simultaneous flow of silane and arsine contained in an exhaust gas of DRAM processing chamber (12). The system includes a CVD abatement apparatus (20) and a resin-type adsorber (22). The CVD abatement apparatus comprises an enclosure (24) that defines a chamber (26) for receiving the exhaust gas. The enclosure contains a plurality of removable substrates (32) arranged as a series of baffles inside the enclosure. As the exhaust gas flows through the CVD abatement apparatus, the silicon within the silane is deposited as a film upon the substrates by chemical vapor deposition. The arsine continues to flow through the CVD apparatus to the adsorber where it is adsorbed by the resin contained therein. After the film has reached a particular thickness, the substrates can be removed from the enclosure, cleaned of the film and returned to the enclosure for further use.
摘要:
A sub-atmospheric gas delivery system (100) with a backflow control apparatus (10) for preventing backflow into the sub-atmospheric gas source (14). The gas delivery system includes three fluidly coupled sticks: a purge stick (120), a process gas delivery stick (124) and an evacuation stick (130). The backflow control apparatus comprises a gas line (26) fluidly coupling the sub-atmospheric gas source to a chamber (50), a valve (20) attached to the sub-atmospheric gas source for blocking fluid communication between the gas source and the gas line upon receipt of a first signal, a flow restrictor (R) in fluid communication with the gas line and positioned between the valve and the chamber, and first and second pressure transducers (P1 and P2) in fluid communication with the gas line and positioned on either side of the flow restrictor. Each transducer is capable of generating a signal representative of pressure. The backflow control apparatus further includes a valve controller unit (40) connected to the first and second pressure transducers and the valve. The controller is capable of generating the aforementioned first signal in response to the signals from the first and second pressure transducers.
摘要:
A system for abating a simultaneous flow of silane and arsine contained in an exhaust gas of DRAM processing chamber. The system includes a CVD abatement apparatus and a resin-type adsorber. The CVD abatement apparatus comprises an enclosure that defines a chamber for receiving the exhaust gas. The enclosure contains a plurality of removable substrates arranged as a series of baffles inside the enclosure. As the exhaust gas flows through the CVD abatement apparatus, the silicon within the silane is deposited as a film upon the substrates by chemical vapor deposition. The arsine continues to flow through the CVD apparatus to the adsorber where it is adsorbed by the resin contained therein. After the film has reached a particular thickness, the substrates can be removed from the enclosure, cleaned of the film and returned to the enclosure for further use.
摘要:
A method of estimating decaps required for an IC during an initial floorplanning design phase begins by obtaining voltage variation waveforms for a plurality of nodes in a power distribution network of the IC. Next, the method computes a minimum value for each of the voltage variation waveforms and selects voltage variation waveforms below a minimum threshold value. Following this, an FDA is performed on the voltage variation waveforms below the minimum threshold value to create a set of frequency values. This involves performing an FFT on each of the voltage variation waveforms to obtain frequency domain data, wherein frequencies that cause a drop in voltage in the plurality of nodes are filtered. The method then sorts the frequency domain data, wherein the frequency domain data is arranged in order based on amplitude value, total power, frequency components, and/or amplitude of imaginary components.
摘要:
A method of estimating decaps required for an IC during an initial floorplanning design phase begins by obtaining voltage variation waveforms for a plurality of nodes in a power distribution network of the IC. Next, the method computes a minimum value for each of the voltage variation waveforms and selects voltage variation waveforms below a minimum threshold value. Following this, an FDA is performed on the voltage variation waveforms below the minimum threshold value to create a set of frequency values. This involves performing an FFT on each of the voltage variation waveforms to obtain frequency domain data, wherein frequencies that cause a drop in voltage in the plurality of nodes are filtered. The method then sorts the frequency domain data, wherein the frequency domain data is arranged in order based on amplitude value, total power, frequency components, and/or amplitude of imaginary components.
摘要:
A sub-atmospheric gas delivery system (100) with a backflow control apparatus (10) for preventing backflow into the sub-atmospheric gas source (14). The gas delivery system includes three fluidly coupled sticks: a purge stick (120), a process gas delivery stick (124) and an evacuation stick (130). The backflow control apparatus comprises a gas line (26) fluidly coupling the sub-atmospheric gas source to a chamber (50), a valve (20) attached to the sub-atmospheric gas source for blocking fluid communication between the gas source and the gas line upon receipt of a first signal, a flow restrictor (R) in fluid communication with the gas line and positioned between the valve and the chamber, and first and second pressure transducers (P1 and P2) in fluid communication with the gas line and positioned on either side of the flow restrictor. Each transducer is capable of generating a signal representative of pressure. The backflow control apparatus further includes a valve controller unit (40) connected to the first and second pressure transducers and the valve. The controller is capable of generating the aforementioned first signal in response to the signals from the first and second pressure transducers.