摘要:
Provided are a thin film transistor (TFT) having a chalcogenide layer and a method of fabricating the TFT. The TFT includes an amorphous chalcogenide layer, a crystalline chalcogenide layer, source and drain electrodes, and a gate electrode. The amorphous chalcogenide layer forms a channel layer. The crystalline chalcogenide layer is formed on both sides of the amorphous layer to form source and drain regions. The source and drain electrodes are formed on both sides of the amorphous chalcogenide layer and connected to the source and drain regions of the crystalline chalcogenide layer, respectively. The gate electrode is formed above or under the channel layer with a gate insulation layer being interposed between the channel layer and the gate electrode. Therefore, the TFT can include an optical TFT structure using the chalcogenide layers as an optical conductive layer and/or an electric TFT providing diode rectification using the chalcogenide layers.
摘要:
Conventional optoconductive compounds, such as CIS or CdTe include scarce indium or environmentally-unfriendly cadmium. On the other hand, an optoconductive compound according to the present invention has high optoconductive efficiency without inclusion of indium and cadmium, wherein the optoconductive compound according to the present invention is represented by AXYY′ where A is a Group 11 element, X is a Group 15 element, and Y and Y′ are Group 16 elements in which Y and Y′ can be identical to or different from each other.
摘要:
Conventional optoconductive compounds, such as CIS or CdTe include scarce indium or environmentally-unfriendly cadmium. On the other hand, an optoconductive compound according to the present invention has high optoconductive efficiency without inclusion of indium and cadmium, wherein the optoconductive compound according to the present invention is represented by AXYY′ where A is a Group 11 element, X is a Group 15 element, and Y and Y′ are Group 16 elements in which Y and Y′ can be identical to or different from each other.