Abstract:
Part of the conductive loop of the threads is formed by a printed circuit on the substrate (5), where the group of the conductive strips (2) placed side by side is produced, and the core (1) is placed on them. The conductive strips (2) overhang from the groundplan of the core (1) and the ends of the conductive strips (2) overhanging on both sides of the core (1) form the connecting surfaces (4). The wires (3) shaped for the encirclement of the core (1) are connected to the connecting surfaces (4), whereby the wire (3) connects a connecting surface (4) of one conductive strip (2) with the connecting surface (4) on the opposite end of the neighboring conductive strip (2). After bonding to one end of the conductive strip (2) the wire is shaped above the substrate (5) by bending in such a way that it arches over the space intended for the core (1) and all wires (3) are shaped in such a way that they produce a channel for the core (1) placed on the substrate (5). The conductive strips (2) are sloped from the normal of the core (1) under an angle pursuant to the pitch of the thread and the wires (3) are led in the opposite slope under the same angle.
Abstract:
Part of the conductive loop of the threads is formed by a printed circuit on the substrate (5), where the group of the conductive strips (2) placed side by side is produced, and the core (1) is placed on them. The conductive strips (2) overhang from the groundplan of the core (1) and the ends of the conductive strips (2) overhanging on both sides of the core (1) form the connecting surfaces (4). The wires (3) shaped for the encirclement of the core (1) are connected to the connecting surfaces (4), whereby the wire (3) connects a connecting surface (4) of one conductive strip (2) with the connecting surface (4) on the opposite end of the neighboring conductive strip (2). After bonding to one end of the conductive strip (2) the wire is shaped above the substrate (5) by bending in such a way that it arches over the space intended for the core (1) and all wires (3) are shaped in such a way that they produce a channel for the core (1) placed on the substrate (5). The conductive strips (2) are sloped from the normal of the core (1) under an angle pursuant to the pitch of the thread and the wires (3) are led in the opposite slope under the same angle.
Abstract:
During the contactless transfer of the data from PICC (1) to PCD (4) with the load modulation within PICC (1) the analog signal between the transmitting antenna (3) and the output of the driver (2) is demodulated. From the demodulated output the digital data are generated for the direction of the subsequent modification of the signal led to the PICC (1) antenna set. The digital data gather from the demodulated signal are used for the amplification and/or attenuation of the signal received on the side of the PCD (4) and/or for synchronization or other modification of the signal on the side of the PICC (1), whereby no further modification of the driver (2) is needed. The connection on the LA, LB outputs appears to the driver (2) by its characteristics, mainly by its impedance, in the same way as the connected antenna (3) of the original connection according to the prior state of the art. Such processing and connection allows to use broadly available analog drivers (2) which can be combined with various other elements of other producers, which achieves real compatibility and high amount of freedom when designing the circuits, as well as the independence from the particular producer of the chips.
Abstract:
During the contactless transfer of the data from PICC (1) to PCD (4) with the load modulation within PICC (1) the analogue signal between the transmitting antenna (3) and the output of the driver (2) is demodulated. From the demodulated output the digital data are generated for the direction of the subsequent modification of the signal led to the PICC (1) antenna set. The digital data gather from the demodulated signal are used for the amplification and/or attenuation of the signal received on the side of the PCD (4) and/or for synchronization or other modification of the signal on the side of the PICC (1), whereby no further modification of the driver (2) is needed. The connection on the LA, LB outputs appears to the driver (2) by its characteristics, mainly by its impedance, in the same way as the connected antenna (3) of the original connection according to the prior state of the art. Such processing and connection allows to use broadly available analogue drivers (2) which can be combined with various other elements of other producers, which achieves real compatibility and high amount of freedom when designing the circuits, as well as the independence from the particular producer of the chips.
Abstract:
A temporary carrier of a removable memory card (2) is in the shape of a flat card (1), where the removable memory card (2) forms an element to be released from the flat card body (1). The removable memory card (2) has at least five additional contacts (4) for temporary usage before the removable memory card is removed from the flat card (1) body. The additional contacts (4) take up a smaller surface as a contact field (5) of a standardized flat card (1). The removable memory card (2) is located within the flat card (1) in such a way that the position of additional contacts (4) corresponds to the position of a standardized flat card (1) contact field (5). The suitable sixth additional switch contact (8) can be used to switch secure elements. The temporary carrier is inserted into a standard burning device, which operates with it in the same way as it would with a common card with a contact field (5).
Abstract:
A temporary carrier of a removable memory card (2) is in the shape of a flat card (1), where the removable memory card (2) forms an element to be released from the flat card body (1). The removable memory card (2) has at least five additional contacts (4) for temporary usage before the removable memory card is removed from the flat card (1) body. The additional contacts (4) take up a smaller surface as a contact field (5) of a standardized flat card (1). The removable memory card (2) is located within the flat card (1) in such a way that the position of additional contacts (4) corresponds to the position of a standardized flat card (1) contact field (5). The suitable sixth additional switch contact (8) can be used to switch secure elements. The temporary carrier is inserted into a standard burning device, which operates with it in the same way as it would with a common card with a contact field (5).
Abstract:
A POS payment terminal (1) using a mobile communication device (4), such as a mobile phone, is created over a temporary connection between the merchant's Sales Device (2) with the removable memory card (18), where the removable memory card (18) is inserted into the customer's slot of the mobile communication device (4). The Sales Device (2) contains a secure memory (6) with the POS terminal's identification data in the form of a SAM card or an ICC card (9) or directly in the form of a secure element on the circuit printed. The payment terminal (1) is created before or during the payment process over a temporary connection between a Sales Device (2) with a mobile communication device (4), which is held by the customer and which has a removable memory card that can have an independent communication element, especially of the NFC type. The payment cryptogram is of standard form, e.g. in the EMV format and it is sent online or offline in batches to the payment processing center (15) according to the amount paid and the preset risk management.