摘要:
A fixture for cutting thin substrates, such as films, wafers, semiconductor layers and the like, using a blade holder assembly joined to a substrate clamp assembly. Each assembly has a plurality of members with the substrate clamp having a base plate that introduces a vacuum environment and a substrate support plate that uses the vacuum to secure the substrate in place. The blade holder assembly has interlocking projections in interleaving sheet members sandwiched between two bracket members that define slots for supporting a knife. Multiple slots allow the blade to be positioned in different positions and different orientations for cutting thin substrates held with vacuum pressure in the substrate clamp assembly.
摘要:
A method and system for dicing semiconductor devices from a semiconductor film. A semiconductor film, backed by a metal layer, is bonded by an adhesive layer to a flexible translucent substrate. Reference features on the film are used to describe a cutting path like a scribe line. An infrared laser beam is aligned to the scribe lines from the back surface of the flexible substrate. The infrared laser beam cuts through the flexible substrate and the majority of the thickness of the adhesive layer, cutting a first trough of a backside street along a scribe line defined by the reference features. An ultraviolet laser beam is aligned to the backside street, or to the scribe line as mapped to the back surface of the flexible substrate. The ultraviolet laser cuts through the metal layer and the semiconductor film, cutting a second trough along the scribe line. The second trough extends from the bottom of and deepens the first trough, cutting through the semiconductor film.
摘要:
A method of kerf formation and treatment for solar cells and semiconductor films and a system therefor are described. A semiconductor film is backed by a first metal layer and topped by a second metal layer. A reference feature is defined on the film. An ultraviolet laser beam is aligned to the reference feature. A kerf is cut along the reference feature, using the ultraviolet laser beam. The beam cuts through the second metal layer, through the film and through the first metal layer. Cutting leaves debris deposited on walls of the kerf. The debris is cleaned off of the walls, using an acid-based solvent. In the case of solar cells, respective first terminals of the solar cells are electrically isolated by the cleaned kerf, and respective negative terminals of the solar cells are electrically isolated by the cleaned kerf.
摘要:
A method of laser cutting through dissimilar materials separated by a metal foil. A material stack includes a semiconductor layer or film, with a metal foil layer attached to the back surface. The metal foil layer is attached to an insulative support material layer. A laser parameter is selected and optimized for the material stack. A laser beam creates a kerf in the material stack down to the metal foil layer. The laser beam removes metal through the kerf primarily by gasification rather than melting. Kerf formation continues after optimization of the laser parameter for removal of material from the remaining layers. A debris field resulting from the laser cutting of the metal layer is reduced and/or a portion of the debris is removed in an assisted manner as the beam cuts. The materials are diced by cutting the kerf through all materials.
摘要:
A method and system for dicing semiconductor devices from semiconductor thin films. A semiconductor film, backed by a metal layer, is bonded by an adhesive layer to a flexible translucent substrate. Reference features define device boundaries. An ultraviolet laser beam is aligned to the reference features and cuts through the semiconductor film, the metal layer and partially into the adhesive layer, cutting a frontside street along a real or imaginary scribe line on the cutting path. An infrared laser beam is aligned to the trough of the frontside street from the back surface of the flexible substrate, or the scribe lines are mapped to the back surface of the flexible substrate. The infrared laser beam cuts through the flexible substrate and the majority of the thickness of the adhesive layer, cutting a backside street along the scribe line. The backside street overlaps or cuts through to the frontside street, thereby separating the semiconductor devices.