Abstract:
A wind turbine is provided including a nacelle housing a power train of the wind turbine. The power train of the wind turbine includes a gearbox, a generator, and one or more rotatable shafts, each including a radial direction and an axial direction. Further, the wind turbine includes a vibration absorbing device being arranged on a shaft of the power train. The vibration absorbing device includes an energy storing arrangement, which includes a flexible element and a mass assembly. The vibration absorbing device is connected to the shaft in an axially symmetric way.
Abstract:
A rotor blade assembly and a method for reducing the noise of a rotor blade for a wind turbine are disclosed. The rotor blade has surfaces defining a pressure side, a suction side, a leading edge, and a trailing edge extending between a tip and a root. The rotor blade assembly further includes a noise reducer configured on a surface of the rotor blade, the noise reducer including a plurality of noise reduction features. Each of the plurality of noise reduction features includes a first surface and a second surface. The first surface includes a first portion mounted to one of the pressure side or the suction side and a second portion configured to interact with wind flowing past the other of the pressure side or the suction side. The second surface interrupts an aerodynamic contour of the one of the pressure side or the suction side.
Abstract:
A method of controlling at least one wind turbine, comprising selecting a first effective operational curve from a plurality of operational curves, and applying the first effective operational curve to control at least one wind turbine. The operational curves may be operational curve segments.
Abstract:
A modular rotor blade hub for a wind turbine rotor includes a plurality of segments, wherein at least one segment includes at least one face abutting against at least one face of at least one adjacent segment, and wherein at least one of said faces extends from an outer periphery of the hub to a central region of the hub. Further, methods for mounting a wind turbine including a modular hub are provided.
Abstract:
A rotor blade 1 comprises a main blade section 10, and an extension flap 20. The extension flap 20 is translationally moveable relative to the main blade section 10. At least the main blade section 10 and the extension flap 20 form an airfoil lifting surface of the blade. A dimension of the airfoil lifting surface is variable by translationally moving the extension flap 20 relative to the main blade section 10.
Abstract:
A method for controlling noise from a wind park that has a plurality of wind turbines includes monitoring noise emission from the wind turbines in at least a near field area and utilizing a transfer function of noise emission to determine a noise impact importance of the wind turbines at one or more locations in a far field area beyond a boundary of the wind park. The method further includes determining which, if any, wind turbines to operate in a noise-reduced operation mode in accordance with the noise impact importance determination and controlling operation modes of the wind turbines in accordance with the determination of which, if any, wind turbines to operate in a noise reduced mode.
Abstract:
A rotor blade assembly and a method for reducing the noise of a rotor blade for a wind turbine are disclosed. The rotor blade has surfaces defining a pressure side, a suction side, a leading edge, and a trailing edge extending between a tip and a root. The rotor blade assembly further includes a noise reducer configured on a surface of the rotor blade, the noise reducer including a plurality of noise reduction features. Each of the plurality of noise reduction features includes a first surface and a second surface. The first surface includes a first portion mounted to one of the pressure side or the suction side and a second portion configured to interact with wind flowing past the other of the pressure side or the suction side. The second surface interrupts an aerodynamic contour of the one of the pressure side or the suction side.
Abstract:
A wind turbine is provided. The wind turbine includes a tower including a yaw interface, a bladed rotor including at least one blade rotatable in response to wind impinging upon the at least one blade, and a beam structure configured to support the bladed rotor. The beam structure includes at least two beam members. Each of the at least two beam members is coupled to the yaw interface by at least one joint element, so that the bladed rotor is rotatable about a yaw axis of the wind turbine. At least two of the joint elements are spaced apart along a longitudinal axis of the tower. Further, another wind turbine including a yaw interface and a method for controlling a yaw angle of a wind turbine are also provided.
Abstract:
A rotor blade 1 includes a main blade section 10, and an extension flap 20. The extension flap 20 is moveable relative to the main blade section 10. At least the main blade section 10 and the extension flap 20 form an airfoil lifting surface of the blade. A dimension of the airfoil lifting surface is variable by moving the extension flap 20 relative to the main blade section 10.
Abstract:
A damping element for a wind turbine rotor blade is provided, the damping element comprising a laminate material made of at least one viscoelastic layer and at least one stiff layer adhered to said viscoelastic layer, wherein the damping element is adapted to be attached to a body of the rotor blade so that the at least one viscoelastic layer is in contact with the body of the rotor blade.