Abstract:
One exemplary embodiment may be a distribution tray for a vessel. Generally, the distribution tray includes a member, a compartment, and an insert. The member can form a first side and a second side. Typically, the first side is adapted to receive a liquid thereon. Additionally, the member can form a plurality of openings. Usually, the compartment extends through the member with a first portion protruding from the first side and a second portion protruding from the second side, and is adapted to permit the passage of a fluid there-through. The insert may be positioned within the compartment to constrict and then expand the passage of the fluid there-through.
Abstract:
A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
Abstract:
A reactor design and process for the dehydrogenation of hydrocarbons is presented. The reactor design includes a multibed catalytic reactor, where each of the reactor beds are fluidized. The catalyst in the reactor cascades through the reactor beds, with fresh catalyst input into the first reactor bed, and the spent catalyst withdrawn from the last reactor bed. The hydrocarbon feedstream is input to the reactor beds in a parallel formation, thereby decreasing the thermal residence time of the hydrocarbons when compared with a single bed fluidized reactor, or a series reactor scheme.
Abstract:
One exemplary embodiment may be a distribution tray for a vessel. Generally, the distribution tray includes a member, a compartment, and an insert. The member can form a first side and a second side. Typically, the first side is adapted to receive a liquid thereon. Additionally, the member can form a plurality of openings. Usually, the compartment extends through the member with a first portion protruding from the first side and a second portion protruding from the second side, and is adapted to permit the passage of a fluid there-through. The insert may be positioned within the compartment to constrict and then expand the passage of the fluid there-through.
Abstract:
A reactor design and process for the dehydrogenation of hydrocarbons is presented. The reactor design includes a multibed catalytic reactor, where each of the reactor beds are fluidized. The catalyst in the reactor cascades through the reactor beds, with fresh catalyst input into the first reactor bed, and the spent catalyst withdrawn from the last reactor bed. The hydrocarbon feedstream is input to the reactor beds in a parallel formation, thereby decreasing the thermal residence time of the hydrocarbons when compared with a single bed fluidized reactor, or a series reactor scheme.
Abstract:
The present invention provides for a gas mixing device and its use in a catalytic partial oxidation reactor. The gas mixing device is typically an eductor such as a venturi-type eductor which will mix the feed gases used in the catalytic partial oxidation process. Two gas mixing devices may be used in sequence.
Abstract:
The present invention relates to a process for removing nitrogen oxides, sulfur oxides, mercury and mercuric oxide from gas streams such as furnace or utility boiler flue gas streams, particularly those derived from coal-fired utility boilers, or from a gas stream from another pollutant abatement process. Ozone will react with the impurities in the gas stream to form mercuric oxide and higher oxides of nitrogen which can be removed by scrubber means. Additionally, and alternatively, the present invention provides for the use of ozone and ultraviolet radiation to remove nitrogen oxides, sulfur oxides and mercury from gas streams.
Abstract:
A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
Abstract:
An apparatus for mixing streams of regenerated and carbonized catalyst utilizes bend provided on only one of the catalyst conduits to provide mixing advantages. A pair of horizontally aligned openings with a band between the pair of openings provided a robust design and superb catalyst mixing performance.
Abstract:
A reactor design and process for the dehydrogenation of hydrocarbons is presented. The reactor design includes a multibed catalytic reactor, where each of the reactor beds are fluidized. The catalyst in the reactor cascades through the reactor beds, with fresh catalyst input into the first reactor bed, and the spent catalyst withdrawn from the last reactor bed. The hydrocarbon feedstream is input to the reactor beds in a parallel formation, thereby decreasing the thermal residence time of the hydrocarbons when compared with a single bed fluidized reactor, or a series reactor scheme.