Abstract:
The present invention discloses a power supply circuit for multi-path light-emitting diode (LED) loads. The two ports of the second diode are connected in parallel with the first switch tube, and the two ports of the forth diode are connected in parallel with the second switch tube. The conduction mode of the second and forth diodes is controlled by controlling the switch status of the first and second switch tubes. When the system is on a normal state, the first and second switch tubes are both switched off. When the load output of any path needs to be turned off, the corresponding switch tube should be controlled to switch on, which makes the diode connected in parallel with the switch tube short-circuited. The present invention can avoid a strong impulse current produced in filtering capacitor when the load of any path is directly short-circuited. Therefore, the present invention can reduce the current stress in circuits, improve the reliability of circuits, and reduce the cost.
Abstract:
A open-circuit protection circuit of a constant current driving circuit for light emitting diodes is disclosed, which includes that: a transformer (Ta1), which has at least one secondary winding (WT1), is connected to at least two load branches (A1,A2); a commutating loop is composed of each load branches (A1, A2) and one secondary winding (WT1), wherein the secondary winding (WT1) has tap ends; a current sharing transformer (T1) is set in two neighbor load branch (A1, A2); each load branch (A1, A2) is separately connected to one open-circuit protection module (10). The open circuit protection module (10) includes: a detection control unit (101), used for outputting a control signal to a processing unit (102) when the detection control unit detects that the output voltages of each load branch (A1, A2) or the voltages proportionate to the output voltages are not less than a corresponding preset threshold; the processing unit (102), used for shorting one secondary sub winding (WT11, WT12) in the corresponding load branch (A1, A2) and a sharing current winding (W1) of the current sharing transformer (T1) in series with the secondary sub winding (WT11, WT12) when receiving the control signal. With the embodiments of the present invention, the cost and the bulk of the current sharing transformer (T1) can be reduced.
Abstract:
A drive circuit for realizing accurate constant current of multiple LEDs is disclosed. The drive circuit comprises a high-frequency impulse Alternating Current (AC) power carrying N circuit units with same structure. Each of the circuit unit comprises a rectifier filter circuit, a blocking capacitor C1 and two LED loads. The rectifier filter circuit comprises two independent half-wave rectifier circuits, and two filter capacitors. Each of the two half-wave rectifier circuits comprises two diodes connected in series to supply power for the corresponding LED load. The filter capacitor is connected in parallel with the two ends of an LED load respectively, and the blocking capacitor C1 is connected in series with the input end of the rectifier filter circuit. The circuit also comprises N−1 equalizing transformers, each of which connects in series between two adjacent circuit units. A drive circuit for constant output current of multiple LEDs with high efficient, low cost and great flow equalization is provided in the embodiment of the invention. When the differential voltage of the two LED loads is large, high efficiency can also be achieved.
Abstract:
Provided is a circuit for adjusting light-emitting diode (LED) current; the circuit comprises: a single-output constant current source (21), a multi-path LED output circuit (22) and a control bus (20) connected to the multi-path LED output circuit (22); any given LED output circuit comprises: a load circuit (23), an adjustment circuit (24), a current regulation circuit (25) and an adjustment control circuit (26). The circuit for adjusting LED current provided in the technical solution of the present invention adjusts the current of each LED output circuit via the load circuit, the adjustment circuit, the current regulation circuit and the adjustment control circuit, thus adjusting characteristic parameters such as color, color temperature, color rendering index, brightness and the like of the LED light source, thereby avoiding the problem of high cost caused by using multi-path constant current DC/DC circuit to adjust the current of each path.
Abstract:
A multi-path constant current drive circuit includes a DC/AC converter, a main transformer and at least two rectifying and filtering units. The main transformer includes at least one assistant side winding with a tap; together with the assistant side winding of the main transformer, each of the at least two rectifying and filtering units respectively forms a power supply loop; each power supply loop includes a first rectifying loop and a second rectifying loop, which are relatively used for the rectification of the positive and the negative half-cycle alternating voltage; a current-equalizing transformer is arranged between the adjacent first power supply loop and second power supply loop, the windings of the current-equalizing transformer are respectively in the rectifying loops contained in the first power supply loop and the second power supply loop, thus realizing the current equalization between the different rectifying loops in which the adjacent rectifying and filtering units are contained. The multi-path constant current drive circuit performs a good current equalization, and can reduce the volume of the current-equalizing transformer and decrease the cost.
Abstract:
A load driving device and system, and a limiting point control method and device. The load driving device comprising: a voltage/current regulative main circuit placed under the control of an output current controller, for use in conducting a voltage conversion on an input voltage, and in supplying electric power to a subsequent load unit; a sampling unit connected to an output terminal of the main circuit, for use in sampling an output feature parameter of the main circuit; the output current controller, for use in controlling a limiting point of the main circuit, and on the basis of the adjustment direction of the limiting point and on changes of the output feature parameters of the main circuit before and after an adjustment, determining a steady working point for the main circuit, and controlling the main circuit to work at the steady working point. The load driving device and system enable an increase in driver reliability and a reduction in circuit complexity.
Abstract:
A multi-path constant current driving circuit. In the multi-path constant current driving circuit, a current sharing transformer (T31, T32, T33, T3(n−1)) is provided in power supply circuits which are provided with adjacent rectifier and filter units (Z31, Z32, Z33, Z3n). A first winding of the current sharing transformer (T31, T32, T33, T3(n−1)) is connected between a first terminal of a secondary winding of a first power supply circuit and the rectifier and filter unit (Z31, Z32, Z33, Z3n) of the first power supply circuit. A second winding of the current sharing transformer (T31, T32, T33, T3(n−1)) is connected between a first terminal of a secondary winding of a second power supply circuit and the rectifier and filter unit (Z31, Z32, Z33, Z3n) of the second power supply circuit. In-phase current flows through the dotted terminal of the first winding and the synonym terminal of the second winding of the current sharing transformer (T31, T32, T33, T3(n−1)). The current sharing transformer (T31, T32, T33, T3(n−1)) is used for sharing the current between the power supply circuits which are provided with the adjacent rectifier and filter units (Z31, Z32, Z33, Z3n ). The driving circuit is provided with high current sharing efficiency, a small size and a low cost.
Abstract:
A method, an apparatus and a system for controlling a light source are disclosed. The method comprises: receiving a dimming command, determining the dimming item specified by the dimming command (201); determining the corresponding chopping type and/or the range of the chopping phase angle according to the dimming item (202); and controlling the regulation switch according to the determined chopping type and/or the range of the chopping phase angle in order to output the voltage containing a chopping voltage (203). The method, the apparatus and the system can achieve the regulation functions for the light source color and/or the luminance etc.
Abstract:
A constant-current Light Emitting Diode (LED) driver circuit is provided, and the circuit includes: an output voltage adjustable circuit and at least one path of LED load, wherein the output voltage adjustable circuit comprises: a switch converting main circuit, an output characteristic parameter sampling circuit, and an output voltage controller. The output voltage controller is used to adjust the output voltage of the switch converting main circuit according to the variation relationship between the sampling signal output by the output characteristic parameter sampling circuit and the output voltage, determine the adjustive direction of the output voltage magnitude of the switch converting main circuit according to the change of the sampling signal, adjust the magnitude of the output voltage of the switch converting main circuit according to the preset step, and finally make the output voltage equal to the voltage of one path of LED load with the highest voltage or the difference between the output voltage and the voltage of one path of LED load voltage with the highest voltage within the predetermined range. The present solution implements reducing the connection complexity and power dissipation on the base of controlling the multi-path constant-current LED.
Abstract:
A multi-path constant current drive circuit includes a DC/AC converter, a main transformer and at least two rectifying and filtering units. The main transformer includes at least one assistant side winding with a tap; together with the assistant side winding of the main transformer, each of the at least two rectifying and filtering units respectively forms a power supply loop; each power supply loop includes a first rectifying loop and a second rectifying loop, which are relatively used for the rectification of the positive and the negative half-cycle alternating voltage; a current-equalizing transformer is arranged between the adjacent first power supply loop and second power supply loop, the windings of the current-equalizing transformer are respectively in the rectifying loops contained in the first power supply loop and the second power supply loop, thus realizing the current equalization between the different rectifying loops in which the adjacent rectifying and filtering units are contained. The multi-path constant current drive circuit performs a good current equalization, and can reduce the volume of the current-equalizing transformer and decrease the cost.