Abstract:
A system for projecting 2D images, providing a computerized representation of a first, dense, grid of spatial 3D coordinates which respectively correspond to a set of time-points evenly distributed along a time-dimension with constant time-discretization; deriving a dense 2D representation of an image, whose coordinate pairs respectively correspond to said set of time-points; d. Defining a sparse 2D grid of second coordinate pairs, spaced such that distances between any two adjacent coordinate pairs along a row of said sparse 2D grid are constant; and finding, coordinate pairs closest to the second sparser grid to yield a third grid, and a laser controller to control the laser to project a digitally represented image, from said distance, timed to project pixels whose locations respectively correspond to the subset of uniformly distanced positions forming said third grid, thereby to prevent image distortion despite non-uniformity of micro-mirror's angular velocity.
Abstract:
A method for protecting an optical MEMS device, including providing an optical MEMS device defining a field of view and including layers which define a main plane; and forming a protective element, constructed and operative for at least partly covering the optical MEMS device, from an optical structural material and wherein the protective element includes a planar portion tilted with respect to said main plane via which a majority of light energy directed toward said main plane must pass.
Abstract:
A system and method for providing a dimming factor of N using a laser display device having plural colored laser diodes each generating a colored laser beam according to control parameters. At least one of the control parameters of at least one of the laser diodes is varied, at least one of the control parameters being operative to reduce intensity of at least one of the colored laser beams. Varying may comprise providing a dimming factor of m
Abstract:
A system and method for providing a dimming factor of N using a laser display device having plural colored laser diodes each generating a colored laser beam according to control parameters. At least one of the control parameters of at least one of the laser diodes is varied, at least one of the control parameters being operative to reduce intensity of at least one of the colored laser beams. Varying may comprise providing a dimming factor of m
Abstract:
A Micro-Electro-Mechanical Systems (MEMS) device for actuating a gimbaled element, the device comprising a symmetric electromagnetic actuator for actuating one degree of freedom (DOF) and a symmetric electrostatic actuator for actuating the second degree of freedom.
Abstract:
A system for projecting 2D images, providing a computerized representation of a first, dense, grid of spatial 3D coordinates which respectively correspond to a set of time-points evenly distributed along a time-dimension with constant time-discretization; deriving a dense 2D representation of an image, whose coordinate pairs respectively correspond to said set of time-points; d. Defining a sparse 2D grid of second coordinate pairs, spaced such that distances between any two adjacent coordinate pairs along a row of said sparse 2D grid are constant; and finding, coordinate pairs closest to the second sparser grid to yield a third grid, and a laser controller to control the laser to project a digitally represented image, from said distance, timed to project pixels whose locations respectively correspond to the subset of uniformly distanced positions forming said third grid, thereby to prevent image distortion despite non-uniformity of micro-mirror's angular velocity.
Abstract:
A system for projecting 2D images, providing a computerized representation of a first, dense, grid of spatial 3D coordinates which respectively correspond to a set of time-points evenly distributed along a time-dimension with constant time-discretization; deriving a dense 2D representation of an image, whose coordinate pairs respectively correspond to said set of time-points; d. Defining a sparse 2D grid of second coordinate pairs, spaced such that distances between any two adjacent coordinate pairs along a row of said sparse 2D grid are constant; and finding, coordinate pairs closest to the second sparser grid to yield a third grid, and a laser controller to control the laser to project a digitally represented image, from said distance, timed to project pixels whose locations respectively correspond to the subset of uniformly distanced positions forming said third grid, thereby to prevent image distortion despite non-uniformity of micro-mirror's angular velocity.
Abstract:
A system for projecting 2D images, providing a computerized representation of a first, dense, grid of spatial 3D coordinates which respectively correspond to a set of time-points evenly distributed along a time-dimension with constant time-discretization; deriving a dense 2D representation of an image, whose coordinate pairs respectively correspond to said set of time-points; d. Defining a sparse 2D grid of second coordinate pairs, spaced such that distances between any two adjacent coordinate pairs along a row of said sparse 2D grid are constant; and finding, coordinate pairs closest to the second sparser grid to yield a third grid, and a laser controller to control the laser to project a digitally represented image, from said distance, timed to project pixels whose locations respectively correspond to the subset of uniformly distanced positions forming said third grid, thereby to prevent image distortion despite non-uniformity of micro-mirror's angular velocity.
Abstract:
A system and method for using a laser, including using a coherent light source to generate a beam having a dominant wavelength wl; and providing along the beam's light path, at least one optical element having a surface upon which the beam impinges, whose roughness is between D and ½ wl−D where D is double the tolerance of the laser's dominant wavelength.
Abstract:
Optical apparatus comprising a MEMS substrate having a surface; and a stack of optical coatings which is deposited on the MEMS substrate's surface and which modifies at least one property of light impinging on the stack.