Abstract:
An RF connector (100) for receiving a mating connector along a mating direction, includes an insulative housing (1), an outer conductor (3) retained with the insulative housing, and a central conductor (2) retained with the insulative housing. The outer conductor includes a tubular section (31) defining an axial line along the mating direction and a number of leg sections (32, 33) extending outwardly from a bottom of the tubular section. The central conductor includes a contact section (22) positioned within the tubular section along the mating direction, a radial section (21) extending outwardly from a bottom of the contact section along a radial direction perpendicular to the mating direction, and an extension section (24) extending out of the insulative housing. The extension section is connected with the radial section via a declined connection portion (23). The insulative housing extends below the radial section.
Abstract:
An electrical connector (100) includes an insulative housing (20) defining a plurality of passageways (20a) with an inserted opening (215), a plurality of forniciform terminals (30) inserted into the passageways (20a) from the inserted openings (215) and disposed therein, each defining a soldering portion (34) extending towards outside of the insulative housing (20) and a connecting portion (33) folding and extending from one end of soldering portion (34). Each of the connecting portions (33) covers the inserted opening (215), both cut sides (331) of which are pressed against by a pair of protecting protrusions (216) which integrally protrudes outwards from both sides of inserted opening (215) of the insulative housing (20).
Abstract:
An electrical card connector (100) mounted on a Printed Circuit Board includes an insulating housing (1), a shell (2) mounted on the insulating housing and a terminal module (3). The insulating housing defines an accommodating room (14), and the shell defines a receiving slot (5) with the insulating housing for a card inserted. The terminal module comprises a plurality of terminals (30) and a position section (32) retained on the PCB. Wherein the terminal module is soldered on the PCB directly, and receiving in the accommodating room of the insulating housing separately.
Abstract:
An electrical card connector (100) includes a metal shield (1), an insulated housing (2) and a terminal module (3) having a plurality of terminals (33) received therein. The metal shield covers the insulated housing to define a card receiving room and a card insertion/ejection direction. The insulated housing defines a receiving cavity (24, 25) and forms an elastic piece (26). The terminal module is slidably received in the receiving cavity of the insulated housing along the card ejection direction and is fixed in the insulated housing by the elastic piece.
Abstract:
A card connector assembly (1) includes an insulating housing (21, 22), a number of contacts (211, 222), a daughter board (7), a rear socket (8) and a spacer (6). The insulating housing (21, 22) defines a card receiving space. Each contact (211, 222) comprises a contacting portion and a soldering portion. The daughter board (7) comprises a plurality of conductive portions. The rear socket (8) is adapted to be mounted to a mother board and to electrically connect with the daughter board (7) to establish an electrical connection between the contacts (211, 222) and the mother board. The spacer (6) is formed with a holding portion (65) on lateral side faces thereof with one end assembled to the insulating housing (21, 22) and the other end mating with the daughter board (7) to securely hold the soldering portions of the contacts.
Abstract:
An electronic card connector (100) comprises an insulating housing (10), a plurality of contacts (20) received in the insulating housing (10), and a shell (30) mounted on the insulating housing (10). The shell (30) comprises a top plate portion (320), a pair of side plate portions (322) and a pair of bottom plate portions (324). A plurality of spring arms (321, 325) is stamped from the top plate portion (320) and the bottom plate portions (324). The spring arms (321) stamped from the top plate portion (320) and the spring arms (325) stamped from the bottom plate portions (324) define a pair of guide recesses (34) to guide an electronic card into the insulating housing (10). All the spring arms (321, 325) can mechanically and electrically connect with the inserted electronic card reliably and perform ESD function.
Abstract:
An electronic card connector (100) comprises an insulating housing (10), a plurality of contacts (20) received in the insulating housing (10), and a shell (30) mounted on the insulating housing (10). The shell (30) comprises a top plate portion (320), a pair of side plate portions (322) and a pair of bottom plate portions (324). A plurality of spring arms (321, 325) is stamped from the top plate portion (320) and the bottom plate portions (324). The spring arms (321) stamped from the top plate portion (320) and the spring arms (325) stamped from the bottom plate portions (324) define a pair of guide recesses (34) to guide an electronic card into the insulating housing (10). All the spring arms (321, 325) can mechanically and electrically connect with the inserted electronic card reliably and perform ESD function.
Abstract:
A card connector comprises an insulating housing; a plurality of contacts retained in the insulating housing; a shielding provided with one end along a card inserting direction coupled on the housing, and defining a card receiving space together with the insulating housing with a card inserting opening at the other end of the shielding, the shielding having a pair of opposite side edges, one of the side edges being in substantially linear configuration and the other of the side edges being in a step configuration so that the width of the card inserting opening is wider than that of the insulating housing; and an ejector assembled on the shield for ejecting the card.
Abstract:
An electrical card connector (1) is provided for accommodating an electrical card. The electrical card connector comprises a dielectric housing having a plurality of connector terminals (20), a pair of soldering pieces (30), a shielding (40) assembled on the dielectric housing and defining an insertion port for insertion therein of the electrical card, and an ejector (70) for ejecting the electrical card received in the card connector. The soldering pieces are received respectively in slots of the dielectric housing and have legs for engaging with grounding pads of a printed circuit board. The shielding is formed with tabs (433, 443) extending to abut against the soldering pieces in the slots for establishing grounding pathes between the shielding and the printed circuit board.
Abstract:
An electrical card connector (1) is provided for accommodating an electrical card. The electrical card connector comprises a dielectric housing having a plurality of connector terminals (20), a pair of soldering pieces (30), a shielding (40) assembled on the dielectric housing and defining an insertion port for insertion therein of the electrical card, and an ejector (70) for ejecting the electrical card received in the card connector. The soldering pieces are received respectively in slots of the dielectric housing and have legs for engaging with grounding pads of a printed circuit board. The shielding is formed with tabs (433, 443) extending to abut against the soldering pieces in the slots for establishing grounding pathes between the shielding and the printed circuit board.