Abstract:
An electrical card connector for receiving two electronic cards (7, 8) different in sizes and shapes comprises an insulating header (1), a plurality of electrical contacts (5) retained in the insulating header (1) and each having an engaging portion (51) for electrically connecting with an inserted card (7, 8), and a metallic shell (3) covering on the insulating header (1). The metallic shell (3) further has a top wall (31) providing at three elastic pieces (311, 312, 313). Wherein the width between a first and second elastic pieces (311, 312) accords with the width of a first card (7), and the width between the first and a third elastic pieces (311, 313) accords with the width of a second card (8).
Abstract:
An electrical card connector (100) includes a metal shield (1), an insulated housing (2) and a terminal module (3) having a plurality of terminals (33) received therein. The metal shield covers the insulated housing to define a card receiving room and a card insertion/ejection direction. The insulated housing defines a receiving cavity (24, 25) and forms an elastic piece (26). The terminal module is slidably received in the receiving cavity of the insulated housing along the card ejection direction and is fixed in the insulated housing by the elastic piece.
Abstract:
An electrical connector (100) includes an insulative housing (20) defining a plurality of passageways (20a) with an inserted opening (215), a plurality of forniciform terminals (30) inserted into the passageways (20a) from the inserted openings (215) and disposed therein, each defining a soldering portion (34) extending towards outside of the insulative housing (20) and a connecting portion (33) folding and extending from one end of soldering portion (34). Each of the connecting portions (33) covers the inserted opening (215), both cut sides (331) of which are pressed against by a pair of protecting protrusions (216) which integrally protrudes outwards from both sides of inserted opening (215) of the insulative housing (20).
Abstract:
An electrical card connector (100) includes a metal shield (1), an insulated housing (2) and a terminal module (3) having a plurality of terminals (33) received therein. The metal shield covers the insulated housing to define a card receiving room and a card insertion/ejection direction. The insulated housing defines a receiving cavity (24, 25) and forms an elastic piece (26). The terminal module is slidably received in the receiving cavity of the insulated housing along the card ejection direction and is fixed in the insulated housing by the elastic piece.
Abstract:
An electrical card connector for receiving two electronic cards (7, 8) different in sizes and shapes comprises an insulating header (1), a plurality of electrical contacts (5) retained in the insulating header (1) and each having an engaging portion (51) for electrically connecting with an inserted card (7, 8), and a metallic shell (3) covering on the insulating header (1). The metallic shell (3) further has a top wall (31) providing at three elastic pieces (311, 312, 313). Wherein the width between a first and second elastic pieces (311, 312) accords with the width of a first card (7), and the width between the first and a third elastic pieces (311, 313) accords with the width of a second card (8).
Abstract:
An electrical connector (100) includes an insulative housing (10) with a base portion (11, 12), a first engaging portion (14) and a second engaging portion (121) extending from the base portion along same direction, a plurality of conductive terminals (30) retained in the insulative housing (10) and a shielding member (20) assembled on the housing. The shielding member (20) has a pair of sidewalls (21, 23) opposite to each other and a pair of end walls (22) surrounding the first engaging portion (14) thereby forming a mating cavity between thereof. One of the end walls (22) is served as a partition located between the first engaging portion (14) and the second engaging portion (121) which extends outwards through the shielding member (20) then nearly presses against the shielding member.
Abstract:
A card connector comprises an insulating housing comprising a base and a plurality of tongue portions extending from the base; a shell covering the insulating housing; a plurality of contacts arranged in upper and lower line each retained on the housing; the contacts each comprising a contacting portion extending into the mating portion, a containing portion secured in the housing, and a soldering portion extending behind the housing; a spacer and a Printed Circuit Board (PCB) each mounted on the insulating housing and the soldering portion of the contacts each receiving in the spacer and the PCB; the distance between the soldering portions of the upper and the lower contacts is smaller than that of the containing portions.
Abstract:
A stacked card connector (100) adaptor for receiving cards includes a first electrical card connector (1), a second electrical card connector (2) under the first electrical card connector and a retaining member (4) integral with the second insulating housing. The first card connector includes a first insulating housing (12) received a plurality of first terminals (13). The second card connector includes a second insulating housing (22) received a plurality of second terminals (23). The retaining member defines a plurality of slots (41), said first and second terminals partially passing through the slots.
Abstract:
An electrical card connector assembly (100) includes an electrical card connector and a printed circuit board (PCB) (4). The electrical card connector includes an insulating housing (2), a plurality of terminals (31) received in the insulating housing and a metal shield (1) covering the insulating housing to define a card receiving room. The insulating housing forms an upper face (20), a lower face (21) and two lateral walls (22) and defines at least one cavity (24). The lateral walls form a plurality of blocks (221). The metal shield includes a base (11), a pair of sidewalls (12) and at least one elastic piece (110) extending along a card insertion direction. The sidewalls define openings (121) receiving the blocks of the sidewalls and form at least one retention portion (120). The base forms a baffle (13) at a rear edge thereof. The PCB is attached with the lower face of the insulating housing and electrically connected with the terminals. Both the retention portion and the baffle press against a lower surface of the PCB and the elastic piece extends into the cavity by a horizontal movement of the metal shield relative to the insulating housing and the PCB.
Abstract:
An electrical card connector assembly (100) comprising: a first electrical card connector (1); a second electrical card connector (2) disposed below the first electrical card connector; a third electrical card connector (3); a fourth electrical card connector (4) arranged abreast with the third electrical card connector; a PCB (5) defining an upper surface (50) and a lower surface (51), the upper and lower surface having a plurality of traces, respectively; wherein the combined first and second card connector are disposed on the upper surface (50) of the PCB and electrically connected with the corresponding traces of the upper surface, and the third and fourth electrical card connector are arranged abreast on the lower surface of the PCB (5) and electrically connecting with the corresponding traces of the lower surface (51).