摘要:
A multiple hard drive connection system includes a first backplane, a second backplane, and a card assembly. The first backplane includes a pass-through and a first socket, and couples to a control system such that the first socket is in electrical communication with the control system. The second backplane is adjacent to and spaced apart from the first backplane, includes a second socket aligned with the pass-through, and couples to the control system such that the second socket is in electrical communication with the control system. The card assembly includes a first edge card connected to the first socket and a second edge card extending through the pass-through and connected to the second socket. The card assembly couples to a hard drive such that the hard drive is in electrical communication with the control system via the first backplane, the second backplane, and the card assembly.
摘要:
Disclosed is a multi-drive adaptor that includes at least two disk drive ports, a connector, and a communication path. The connector is configured to receive at least one disk drive command transmitted according to a serial protocol from a serial controller. The communication path connects the at least two disk drive ports to the connector and is configured to communicate the at least one disk drive command received at the connector to each of the at least two ports. In some embodiments the connector includes a parallel connector, and the communication path includes serial-to-parallel bridges, each serial-to-parallel bridge coupled to the parallel connector and further coupled to a respective one of the at least two ports. In some embodiments the serial controller is a SATA controller. In some embodiments the connector is a parallel ATA (PATA) connector. In some embodiments the communication path includes a port multiplier.
摘要:
A multi-cell disk drive test system that provides for asynchronous software module updates that includes a test platform, one or more test manager computers (TMCs), and a test coordinator computer (TCC). The test platform includes a plurality of cells in which each cell is configured to receive and to provide communication with a disk drive. The TCC is configured to communicate with one or more TMCs and to store a plurality of updated software module versions. After a disk drive is determined to be in an appropriate cell, the TMC: determines a test step to be performed on the disk drive and a cell software module currently stored for the cell; determines if an updated software module version associated with the test step is stored on the TCC, and if so, downloads the updated software module version, and updates the TMC with the updated cell software module version.
摘要:
A multiple hard drive connection system includes a first backplane, a second backplane, and a card assembly. The first backplane includes a pass-through and a first socket, and couples to a control system such that the first socket is in electrical communication with the control system. The second backplane is adjacent to and spaced apart from the first backplane, includes a second socket aligned with the pass-through, and couples to the control system such that the second socket is in electrical communication with the control system. The card assembly includes a first edge card connected to the first socket and a second edge card extending through the pass-through and connected to the second socket. The card assembly couples to a hard drive such that the hard drive is in electrical communication with the control system via the first backplane, the second backplane, and the card assembly.
摘要:
An asynchronous system for testing disk drives includes a test platform that includes a plurality of slots for receiving and for providing communication with drives. The slots are segregated into a plurality of groups configured to satisfy predetermined environmental, communication bandwidth and test schedule requirements of the drives to be loaded therein. An automated loader/unloader is configured to selectively load drives into and out of the platform and to move drives between the plurality of groups. A module controller is assigned to each group of slots, each module controller being coupled to the slots of its assigned group and configured to administer at least one test to drives loaded in its assigned group while insuring that the predetermined environmental, communication bandwidth and test schedule requirements of its assigned group remain satisfied. A test matrix controller controls the loader/unloader to asynchronously move each drive that passes the test(s) administered in one group to a selected empty slot of another group for administration of a next test, to asynchronously move each drive that completes or fails the series of tests out of the platform. The moving steps are carried out without compromising the respective environmental, communication bandwidth and test schedule requirements of the plurality of groups.
摘要:
Disclosed is a system and method for disk drive grouping in a multi-cell disk drive test system. A test platform includes a plurality of cells. Each cell is configured to receive and to provide communication with a disk drive. An automated loader/unloader is coupled to a test computer and is responsive to the test computer. The automated loader/unloader is configured to identify disk drives and to selectively load and unload disk drives into and out of the plurality of cells. Particularly, once the automated loader/unloader has identified a first disk drive, the test computer is configured to: determine a grouping criteria based upon the first disk drive; detect a subsequent disk drive having the same grouping criteria as the first disk drive; and cause the automated loader/unloader to load the subsequent disk drive into one of the plurality of cells.
摘要:
A method for manufacturing a disk drive includes assembling the head disk assembly in a clean room, performing servo writing upon the head disk assembly in the clean room, and performing a head disk assembly test upon the head disk assembly in the clean room. The head disk assembly is then connected to the controller printed circuit board assembly to form a drive-under-test. The drive-under-test is then transported to an integrated test system and electrically connected thereto. The integrated tests system then performs substantially all of the required manufacturing tests upon the drive-under-test, thereby substantially reducing the labor and floor space associated therewith.