Abstract:
The present invention relates to a process for the production of a superabsorber, comprising as steps providing a water-absorbing polymer structure, bringing the water-absorbing polymer structure into contact with a modifying agent, preferably a modifying agent, and the further treatment of the water-absorbing polymer structure which has been brought into contact with the modifying agent. The further treatment is carried out at least partly in a rotating container. The invention furthermore relates to a device for the production of a superabsorber, superabsorbers, a composite, a process for the production of a composite, the composites obtainable by this process, chemical products, such as foams, shaped articles or fibers, and the use of a superabsorber.
Abstract:
A process for producing an absorbent polymer including a first mixing event, in which a plurality of absorbent polymer particles (1) are mixed with a liquid (2) and a second mixing event, in which the liquid (2) is homogenized within the interior of the polymer particles. The polymer particles (1) in the first mixing event are mixed with a speed such that the kinetic energy of the individual polymer particles (1) is on average larger than the adhesion energy of the individual polymer particles (1), and the polymer particles (1) in the second mixing event are stirred at a lower speed than in the first mixing event. The different speeds effect a fluidization of the polymer particles (1), which prevents a clumping of the polymer particles (1) during the mixing event. The absorbent polymers thus produced are distinguished by a particularly rapid swelling behavior.
Abstract:
The invention relates to a process for the preparation of water-absorbent polymer particles, comprising the process steps of preparing an aqueous monomer solution comprising at least partially neutralized, monoethylenically unsaturated monomers bearing carboxylic acid groups (α1) and at least one crosslinker (α3), and at least partially neutralizing acrylic acid by mixing acrylic acid with an aqueous solution of sodium hydroxide, thereby obtaining an aqueous solution of the at least partially neutralized acrylic acid; cooling the aqueous solution with a cooling liquid in a heat exchanger, wherein the cooling liquid used in the heat exchanger has been cooled in an absorption chiller in which at least a part of the heat of the heated cooling liquid obtained in the heat exchanger is consumed by the evaporation of a refrigerant liquid in a vacuum that is created by the absorption of a refrigerant vapor into an absorbent.
Abstract:
A process for producing an absorbent polymer including a first mixing event, in which a plurality of absorbent polymer particles (1) are mixed with a liquid (2) and a second mixing event, in which the liquid (2) is homogenized within the interior of the polymer particles. The polymer particles (1) in the first mixing event are mixed with a speed such that the kinetic energy of the individual polymer particles (1) is on average larger than the adhesion energy of the individual polymer particles (1), and the polymer particles (1) in the second mixing event are stirred at a lower speed than in the first mixing event. The different speeds effect a fluidization of the polymer particles (1), which prevents a clumping of the polymer particles (1) during the mixing event. The absorbent polymers thus produced are distinguished by a particularly rapid swelling behavior.
Abstract:
The present invention relates to a process for the production of a superabsorber, comprising as steps providing a water-absorbing polymer structure, bringing the water-absorbing polymer structure into contact with a modifying agent, preferably a modifying agent, and the further treatment of the water-absorbing polymer structure which has been brought into contact with the modifying agent. The further treatment is carried out at least partly in a rotating container. The invention furthermore relates to a device for the production of a superabsorber, superabsorbers, a composite, a process for the production of a composite, the composites obtainable by this process, chemical products, such as foams, shaped articles or fibers, and the use of a superabsorber.
Abstract:
A process for producing an absorbent polymer including a first mixing event, in which a plurality of absorbent polymer particles (1) are mixed with a liquid (2) and a second mixing event, in which the liquid (2) is homogenized within the interior of the polymer particles. The polymer particles (1) in the first mixing event are mixed with a speed such that the kinetic energy of the individual polymer particles (1) is on average larger than the adhesion energy of the individual polymer particles (1), and the polymer particles (1) in the second mixing event are stirred at a lower speed than in the first mixing event. The different speeds effect a fluidization of the polymer particles (1), which prevents a clumping of the polymer particles (1) during the mixing event. The absorbent polymers thus produced are distinguished by a particularly rapid swelling behavior.
Abstract:
The present invention relates to a process for producing a water-absorbing polymer structure based on acid group-containing monomers, comprising the process steps of: i) providing a monomer solution comprising the optionally partly neutralized, acid group-containing monomer; ii) mixing the monomer solution with fines which consist at least to an extent of 90% by weight, based on the total weight of the fines, of particles having a particle size of less than 850 μm, to obtain a monomer solution mixed with fines; wherein the mixing in process step ii) is effected in a mixer in which a first stream of the fines and at least one further stream of the monomer solution are passed from different directions simultaneously to a rotating mixing tool.
Abstract:
A process for producing an absorbent polymer including a first mixing event, in which a plurality of absorbent polymer particles (1) are mixed with a liquid (2) and a second mixing event, in which the liquid (2) is homogenized within the interior of the polymer particles. The polymer particles (1) in the first mixing event are mixed with a speed such that the kinetic energy of the individual polymer particles (1) is on average larger than the adhesion energy of the individual polymer particles (1), and the polymer particles (1) in the second mixing event are stirred at a lower speed than in the first mixing event. The different speeds effect a fluidization of the polymer particles (1), which prevents a clumping of the polymer particles (1) during the mixing event. The absorbent polymers thus produced are distinguished by a particularly rapid swelling behavior.