Abstract:
A sensor system for detecting skew in print media along the feed path of a hardcopy device is disclosed. In one embodiment of the invention the system is arranged to generate a first image of a area of print media at a first position along the feed path and to generate a second image of the area of print media at a second position along the feed path, the system is arranged to compare the first and second images and thereby detect a change in the angle of skew of the media between the first and second positions.
Abstract:
A media-positioning sensor assembly in one embodiment of the invention is disclosed that includes a mechanism and a media-positioning sensor. The mechanism moves back and forth over media along a first axis. The media advances past the mechanism along a second axis perpendicular to the first axis. The media-positioning sensor is situated on the mechanism and is to detect positioning of the media relative to the mechanism along at least one of the first axis and the second axis.
Abstract:
A sensor system for detecting skew in print media along the feed path of a hardcopy device is disclosed. In one embodiment of the invention the system is arranged to generate a first image of a area of print media at a first position along the feed path and to generate a second image of the area of print media at a second position along the feed path, the system is arranged to compare the first and second images and thereby detect a change in the angle of skew of the media between the first and second positions.
Abstract:
A method of an embodiment of the invention is disclosed in which a linear imaging array captures a first one pixel-wide image of media, and the media is effectively advanced relative to the linear imaging array. The linear imaging array captures a second one pixel-wide image of the media, and the first and the second one pixel-wide images are compared to determine relative advancement of the media.
Abstract:
A multicolor-printer has at least a first and a second print station, first and second optical sensors and a surface recordings comparator. The first and second print stations are arranged to print images on a surface of a moving recording medium. The first and second optical sensors view, at the first and second print stations, an area of the recording medium surface to obtain at least one first surface recording, in a manner related to the first print station's image printing, and second surface recordings, respectively. A storage is arranged to store the first surface recording. The surface recordings comparator is arranged to test, during the recording medium movement, for correspondence of second surface recordings with the stored first surface recording. The printer is arranged to repeatedly, within one image, register raster lines of the image of the second print station to corresponding raster lines of the image of the first print station in response to correspondences found between the first and second surface recordings.
Abstract:
An ink reservoir adaptor for use in a printing device, comprising a reservoir supporting element movable relative to the adaptor between first and second positions, the supporting element being arranged in the first position to receive a reservoir such that an interface associated with the reservoir is located in a predetermined position relative to the supporting element, the supporting element being further arranged, when moved to the second position, to bring the interface to a predetermined position relative to the adaptor.
Abstract:
A media-positioning sensor assembly in one embodiment of the invention is disclosed that includes a mechanism and a media-positioning sensor. The mechanism moves back and forth over media along a first axis. The media advances past the mechanism along a second axis perpendicular to the first axis. The media-positioning sensor is situated on the mechanism and is to detect positioning of the media relative to the mechanism along at least one of the first axis and the second axis.
Abstract:
A multicolor-printer has at least a first and a second print station, first and second optical sensors and a surface recordings comparator. The first and second print stations are arranged to print images on a surface of a moving recording medium. The first and second optical sensors view, at the first and second print stations, an area of the recording medium surface to obtain at least one first surface recording, in a manner related to the first print station's image printing, and second surface recordings, respectively. A storage is arranged to store the first surface recording. The surface recordings comparator is arranged to test, during the recording medium movement, for correspondence of second surface recordings with the stored first surface recording. The printer is arranged to repeatedly, within one image, register raster lines of the image of the second print station to corresponding raster lines of the image of the first print station in response to correspondences found between the first and second surface recordings.
Abstract:
A media holddown device a plastics vacuum guide attached to a sheet metal vacuum beam, the guide includes vacuum chambers in communication with the beam through openings to control the negative pressures applied to media of varying widths by a fan. Dividing walls are provided between the chambers to maintain the value of the negative pressure larger than a predetermined value, especially for media with conventional widths. An intermediate wall divides the guide into front and rear chambers to increase the control of media leading edges. The number, size and pattern of arrangement of openings are selected to produce desired air flow characteristics.