Abstract:
A miniaturized, increased efficiency x-ray source for materials analysis includes a laser source, an optical delivery structure, a laser-driven thermionic cathode (108), an anode (122), and a target from the laser source and directs the beam onto a surface of the themionic cathode. The surfaces electrons form an electron beam along a beam path. The target element (110) is disposed in the beam path, and emits x-rays in response to incident accelerated electrons from the thermionic cathode. The target element includes an inclined surface that forms an angle of inclination (113) of about 40 degrees with respect to the electon beam path, so that x-rays are emitted from the target substantially at an angle of about 45 degrees with respect to the electron beam path.
Abstract:
An x-ray source includes an insulating tube having a cylindrical inside surface defining a cylindrical vacuum cavity, a cathode located near a first end of the insulating tube and adapted to be optically heated for emitting electrons, an anode adapted for a voltage bias with respect to the cathode for accelerating electrons emitted from the cathode, an x-ray emitter target located near a second end of the insulating tube for impact by accelerated electrons, and a secondary emission reduction layer covering at least a portion of the inside surface and adapted to minimize charge build-up on the inside surface, wherein the insulating tube is adapted to be weakly conductive to support a uniform voltage gradient along the insulating tube and across the voltage bias between the cathode and the anode.
Abstract:
A therapeutic radiation source includes an in situ radiation detecting system for monitoring in real time an amount of the therapeutic radiation that has been generated. An electron source generates electrons in response to light that is transmitted through a fiber optic cable and impinges upon the electron source. The electrons are accelerated toward the target and strike the target, causing the target to emit therapeutic radiation, such as x-rays. A scintillator is disposed along a path of a portion of the emitted therapeutic radiation, and generates scintillator light corresponding to the intensity of the therapeutic radiation that is incident upon the scintillator. A photodetector in optical communication with the scintillator produces a signal indicative of the intensity of the therapeutic radiation incident upon the scintillator.
Abstract:
A controller is provided for selectively and independently control each of a plurality of therapeutic radiation sources arranged along an array. The controller is operable to selectively generate therapeutic radiation at selected time intervals and at selected intensities. The controller includes intensity control circuitry for controlling the intensity of the therapeutic radiation generated by each therapeutic radiation source. The controller also includes duration control circuitry for controlling the duration of the therapeutic radiation generated by each therapeutic radiation source. The controller may also include a mechanical introducer for inserting the array into a treatment region, and for withdrawing the array from the treatment region.
Abstract:
A therapeutic radiation source includes a spiral-shaped, laser-heated thermionic cathode. A fiber optic cable directs a beam of radiation, having a power level sufficient to heat at least a portion of the electron-emissive surface to an electron emitting temperature, from a laser source onto the cathode. The cathode generates an electron beam along a beam path by thermionic emission, and strikes a target positioned in its beam path. The target includes radiation emissive material that emits therapeutic radiation in response to incident accelerated electrons from the electron beam. The spiral-shaped conductive element has a plurality of spaced apart turns, and is disposed in a vacuum. An interstitial spacing is defined between adjacent turns, so that heat transfer across the spacing between each adjacent turn is essentially eliminated, thereby substantially reducing heat loss in the cathode caused by thermal conduction.
Abstract:
A miniaturized, optically driven therapeutic radiation source operates at significantly reduced power levels. The apparatus includes a laser-driven thermionic cathode, a target element, a probe assembly, and a laser source. The probe assembly includes an optical delivery structure, such as a fiber optic cable, that directs a laser beam from the laser source to impinge upon a surface of the thermionic cathode, heating the surface to a temperature sufficient to cause thermionic emission of electrons. The emitted electrons form an electron beam along a beam path. The target element is positioned in the beam path, and includes means for emitting therapeutic radiation, such as x-rays, in response to incident accelerated electrons from the electron beam. Reflector elements may be included to reflect unabsorbed laser radiation back to the thermionic cathode.
Abstract:
A modular multistage accelerator for use in an X-ray treatment system includes a first 10 kV acceleration stage which houses an electron beam gun supplied with −50 kV of voltage. The modular multi-stage accelerator includes four additional 10 kV stages placed in series with the first stage to achieve a 50 kV accelerator overall. Each stage is shielded to prevent stray electrons from being propagated along the length of the drift tube. The triple point within each modular stage is recessed to significantly reduce the emission of stray electrons within each stage. Additionally, the beam current at the X-ray emitting probe of the X-ray source is measured by isolating the beam current to a beam current measuring circuit in electrical connection with a nulling junction node, wherein other currents within the circuit are nulled at the nulling junction node and the beam current flows to the beam current measuring circuit.
Abstract:
A modular multistage accelerator (102) for use in an X-ray treatment system includes a first 10 kV acceleration stage (120) which houses an electron beam gun supplied with -50 kV of voltage. The modular multi-stage accelerator includes four additional 10 kV stages (112,114,116,118) placed in series with the first stage to achieve a 50 kV accelerator overall. Each stage is shielded (190) to prevent stray electrons from being propagated along the length of the drift tube. The triple point within each modular stage is recessed to significantly reduce the emission of stray electrons within each stage. Additionally, the beam current at the X-ray emitting probe of the X-ray source is measured by isolating the beam current to a beam current measuring circuit (220) in electrical connection with a nulling junction node, wherein other currents within the circuit are nulled at the nulling junction node and the beam current flows to the beam current measuring circuit.
Abstract:
A miniaturized, increased efficiency x-ray source for materials analysis includes a laser source, an optical delivery structure, a laser-driven thermionic cathode (108), an anode (122), and a target from the laser source and directs the beam onto a surface of the themionic cathode. The surfaces electrons form an electron beam along a beam path. The target element (110) is disposed in the beam path, and emits x-rays in response to incident accelerated electrons from the thermionic cathode. The target element includes an inclined surface that forms an angle of inclination (113) of about 40 degrees with respect to the electon beam path, so that x-rays are emitted from the target substantially at an angle of about 45 degrees with respect to the electron beam path.
Abstract:
A method is provided for treating a tumor by pre-irradiation. The location, size, and shape of the tumor is identified. A region that includes the tumor as well as a surrounding portion most likely to contain residual tumorous cells is identified. The identified region is irradiated with therapeutic radiation, such as x-rays, prior to surgical removal of the tumor. The tumor is removed after irradiation of the identified region, leaving only the pre-irradiated surrounding portion. The risk of recurrence of tumorous growth after resection of the tumor may be significantly reduced.