Abstract:
Some embodiments of the invention include system and method for performing a calculation on the data associated with a group of wafers. The system and method display a wafer map having map indicators representing calculation results from the calculation. Other embodiments are described and claimed.
Abstract:
A system and method to perform analysis on test results of multiple integrated circuits. Based on the analysis, the system and method display a wafer map having map indicators representing statistical values of the test results.
Abstract:
A method and apparatus for detection of a particular material, such as photo-resist material, on a sample surface. A narrow beam of light is projected onto the sample surface and the fluoresced and/or reflected light intensity at a particular wavelength band is measured by a light detector. The light intensity is converted to a numerical value and transmitted electronically to a logic circuit which determines the proper disposition of the sample. The logic circuit controls a sample-handling robotic device which sequentially transfers samples to and from a stage for testing and subsequent disposition. The method is particularly useful for detecting photo-resist material on the surface of a semiconductor wafer.
Abstract:
A method and apparatus for detection of a particular material, such as photoresist material, on a sample surface. A narrow beam of light is projected onto the sample surface and the fluoresced and/or reflected light intensity at a particular wavelength band is measured by a light detector. The light intensity is converted to a numerical value and transmitted electronically to a logic circuit which determines the proper disposition of the sample. The logic circuit controls a sample-handling robotic device which sequentially transfers samples to and from a stage for testing and subsequent disposition. The method is particularly useful for detecting photo-resist material on the surface of a semiconductor wafer.
Abstract:
In one aspect, the invention includes a method of thermal processing comprising: a) providing a semiconductor substrate, the semiconductor substrate supporting a material that is to be thermally processed; b) forming a sacrificial mass over the material, the mass comprising an inner portion and an outer portion, the inner portion having a different composition than the outer portion and being nearer the material than the outer portion; c) exposing the mass to radiation to heat the mass, the exposing being for a period of time sufficient for the material to absorb heat from the mass and be thermally processed thereby; and d) removing the mass from over the material. In another aspect, the invention includes a method of thermal processing comprising: a) providing a semiconductor substrate, the substrate supporting a material that is to be thermally processed; b) forming a first sacrificial layer over the material; c) forming a second sacrificial layer over the first sacrificial layer, the second sacrificial layer comprising a different composition than the first sacrificial layer; d) exposing the second sacrificial layer to radiation to heat the second layer, the exposing being for a period of time sufficient for the material to absorb heat from the sacrificial layer and be thermally processed thereby; e) cooling the material and the sacrificial layers; and f) removing the sacrificial layers from over the material.
Abstract:
A method and apparatus for detection of a particular material, such as photo-resist material, on a sample surface are disclosed. A narrow beam of light is projected onto the sample surface and the fluoresced and/or reflected light intensity at a particular wavelength band is measured by a light detector. The light intensity is converted to a numerical value and transmitted electronically to a logic circuit, which determines the proper disposition of the sample. The logic circuit controls a sample-handling robotic device which sequentially transfers samples to and from a stage for testing and subsequent disposition. The method is particularly useful for detecting photo-resist material on the surface of a semiconductor wafer.
Abstract:
A method and apparatus for detection of a particular material, such as photo-resist material, on a sample surface. A narrow beam of light is projected onto the sample surface and the fluoresced and/or reflected light intensity at a particular wavelength band is measured by a light detector. The light intensity is converted to a numerical value and transmitted electronically to a logic circuit which determines the proper disposition of the sample. The logic circuit controls a sample-handling robotic device which sequentially transfers samples to and from a stage for testing and subsequent disposition. The method is particularly useful for detecting photo-resist material on the surface of a semiconductor wafer.
Abstract:
In one aspect, the invention includes a method of thermal processing comprising: a) providing a semiconductor substrate, the semiconductor substrate supporting a material that is to be thermally processed; b) forming a sacrificial mass over the material, the mass comprising an inner portion and an outer portion, the inner portion having a different composition than the outer portion and being nearer the material than the outer portion; c) exposing the mass to radiation to heat the mass, the exposing being for a period of time sufficient for the material to absorb heat from the mass and be thermally processed thereby; and d) removing the mass from over the material. In another aspect, the invention includes a method of thermal processing comprising: a) providing a semiconductor substrate, the substrate supporting a material that is to be thermally processed; b) forming a first sacrificial layer over the material; c) forming a second sacrificial layer over the first sacrificial layer, the second sacrificial layer comprising a different composition than the first sacrificial layer; d) exposing the second sacrificial layer to radiation to heat the second layer, the exposing being for a period of time sufficient for the material to absorb heat from the sacrificial layer and be thermally processed thereby; e) cooling the material and the sacrificial layers; and f) removing the sacrificial layers from over the material.