Abstract:
An electrochromic device includes a first electrochromic region interconnected with a second electrochromic region by a plurality of conductive links disposed between sides of a substrate on which the material layers of the electrochromic device are formed. The plurality of conductive links interconnects a first isolated conductive region of the first electrochromic region with a first isolated conductive region of the second electrochromic region. A sequence of a counter electrode layer, an ion conductor layer and an electrochromic layer is sandwiched between the first conductive regions of the first and second electrochromic regions and respective second isolated conductive regions of the first and second electrochromic regions. The second conductive regions of the first and second electrochromic regions are connected to respective first and second bus bars which are for connection to a low voltage electrical source.
Abstract:
An electrochromic device includes a first electrochromic region interconnected with a second electrochromic region by a plurality of conductive links disposed between sides of a substrate on which the material layers of the electrochromic device are formed. The plurality of conductive links interconnects a first isolated conductive region of the first electrochromic region with a first isolated conductive region of the second electrochromic region. A sequence of a counter electrode layer, an ion conductor layer and an electrochromic layer is sandwiched between the first conductive regions of the first and second electrochromic regions and respective second isolated conductive regions of the first and second electrochromic regions. The second conductive regions of the first and second electrochromic regions are connected to respective first and second bus bars which are for connection to a low voltage electrical source.
Abstract:
An electrochromic device having successive layers of electrochromic electrolyte and counter-electrode materials. The counter-electrode material comprises an oxide of a mixture including at least two of vanadium, titanium and zirconium.
Abstract:
A heat treated electrochromic device comprising an anodic complementary counter electrode layer comprised of a mixed tungsten-nickel oxide and lithium, which provides a high transmission in the fully intercalated state and which is capable of long term stability, is disclosed. Methods of making an electrochromic device comprising an anodic complementary counter electrode comprised of a mixed tungsten-nickel oxide are also disclosed.
Abstract:
An improved ion conductor layer for use in electrochromic devices and other applications is disclosed. The improved ion-conductor layer is comprised of at least two ion transport layers and a buffer layer, wherein the at least two ion transport layers and the buffer layer alternate within the ion conductor layer such that the ion transport layers are in communication with a first and a second electrode. Electrochromic devices utilizing such an improved ion conductor layer color more deeply by virtue of the increased voltage developed across the ion conductor layer prior to electronic breakdown while reducing the amount of electronic leakage. Also disclosed are methods of making electrochromic devices incorporating the improved ion conductor layer disclosed herein and methods of making ion conductors for use in other applications.
Abstract:
An improved ion conductor layer for use in electrochromic devices and other applications is disclosed. The improved ion-conductor layer is comprised of at least two ion transport layers and a buffer layer, wherein the at least two ion transport layers and the buffer layer alternate within the ion conductor layer such that the ion transport layers are in communication with a first and a second electrode. Electrochromic devices utilizing such an improved ion conductor layer color more deeply by virtue of the increased voltage developed across the ion conductor layer prior to electronic breakdown while reducing the amount of electronic leakage. Also disclosed are methods of making electrochromic devices incorporating the improved ion conductor layer disclosed herein and methods of making ion conductors for use in other applications.
Abstract:
An improved ion conductor layer for use in electrochromic devices and other applications is disclosed. The improved ion-conductor layer is comprised of at least two ion transport layers and a buffer layer, wherein the at least two ion transport layers and the buffer layer alternate within the ion conductor layer such that the ion transport layers are in communication with a first and a second electrode. Electrochromic devices utilizing such an improved ion conductor layer color more deeply by virtue of the increased voltage developed across the ion conductor layer prior to electronic breakdown while reducing the amount of electronic leakage. Also disclosed are methods of making electrochromic devices incorporating the improved ion conductor layer disclosed herein and methods of making ion conductors for use in other applications.
Abstract:
An electrochromic device includes a first electrochromic region interconnected with a second electrochromic region by a plurality of conductive links disposed between sides of a substrate on which the material layers of the electrochromic device are formed. The plurality of conductive links interconnects a first isolated conductive region of the first electrochromic region with a first isolated conductive region of the second electrochromic region. A sequence of a counter electrode layer, an ion conductor layer and an electrochromic layer is sandwiched between the first conductive regions of the first and second electrochromic regions and respective second isolated conductive regions of the first and second electrochromic regions. The second conductive regions of the first and second electrochromic regions are connected to respective first and second bus bars which are for connection to a low voltage electrical source.
Abstract:
An electrochromic device includes a first electrochromic region interconnected with a second electrochromic region by a plurality of conductive links disposed between sides of a substrate on which the material layers of the electrochromic device are formed. The plurality of conductive links interconnects a first isolated conductive region of the first electrochromic region with a first isolated conductive region of the second electrochromic region. A sequence of a counter electrode layer, an ion conductor layer and an electrochromic layer is sandwiched between the first conductive regions of the first and second electrochromic regions and respective second isolated conductive regions of the first and second electrochromic regions. The second conductive regions of the first and second electrochromic regions are connected to respective first and second bus bars which are for connection to a low voltage electrical source.
Abstract:
An improved ion conductor layer for use in electrochromic devices and other applications is disclosed. The improved ion-conductor layer is comprised of at least two ion transport layers and a buffer layer, wherein the at least two ion transport layers and the buffer layer alternate within the ion conductor layer such that the ion transport layers are in communication with a first and a second electrode. Electrochromic devices utilizing such an improved ion conductor layer color more deeply by virtue of the increased voltage developed across the ion conductor layer prior to electronic breakdown while reducing the amount of electronic leakage. Also disclosed are methods of making electrochromic devices incorporating the improved ion conductor layer disclosed herein and methods of making ion conductors for use in other applications.