Abstract:
A vibration piece includes: a base portion; a first driving arm which extends in a first axis direction from one end of the base portion in the first axis direction; a second driving arm which extends in the first axis direction from the other end of the base portion in the first axis direction; driving electrodes which are respectively provided in the first driving arm and the second driving arm; a detection arm which extends in a second axis direction perpendicular to the first axis direction from the base portion; a detection electrode which is provided in the detection arm; and a support portion which extends from the base portion, wherein the support portion is provided so as to surround the detection arm.
Abstract:
A vibration gyro element includes drive vibrating arms and detection vibrating arms at the opposite side, and has a first detection mode in which the drive vibrating arms flexurally vibrate oppositely to each other in an out-of-plane direction in an opposite phase to an action direction of Coriolis force and the detection vibrating arms flexurally vibrate oppositely to each other in the out-of-plane direction in an opposite phase to that of the drive vibrating arms, and a second detection mode in which the drive vibrating arms flexurally vibrate oppositely to each other in the out-of-plane direction in the same phase as the action direction of the Coriolis force and the detection vibrating arms flexurally vibrate oppositely to each other in the out-of-plane direction in the same phase as that of the drive vibrating arms.
Abstract:
A bending vibration piece has a pair of drive vibration arms and a pair of detection vibration arms in an opposite direction thereto which are connected to a supporting part. The supporting part has recessed portions formed on both lateral parts in a direction of width, and a through-hole formed substantially at the center in a plane part of the supporting part and more toward the drive vibration arms than the recessed portions are. On a surface of the supporting part, drive electrode pads are arranged toward the drive vibration arms and detection electrode pads are arranged toward the detection vibration arms, with these electrode pads being separated from each other in a longitudinal direction by the recessed portions on both lateral part of the supporting part and the through-hole in the plane part.
Abstract:
A double-side tuning fork-type bending vibration piece having a basal part, a pair of drive vibration arms, a pair of detection vibration arms, drive electrodes and detection electrodes includes adjustment films of a metallic material or the like formed in connecting areas between the vibration arms and the basal part. The adjustment films are formed in such a way as to cover an area of tapered portions formed in connecting parts between the drive vibration arms and the basal part, an area of the basal part near the tapered portions and an area of the drive vibration arms. While monitoring a detection current outputted from the detection electrodes when the drive vibration arms are excited in driving mode, the adjustment films are partly deleted by laser irradiation so that the detection current becomes 0.
Abstract:
A vibration gyro element includes drive vibrating arms and detection vibrating arms at the opposite side, and has a first detection mode in which the drive vibrating arms flexurally vibrate oppositely to each other in an out-of-plane direction in an opposite phase to an action direction of Coriolis force and the detection vibrating arms flexurally vibrate oppositely to each other in the out-of-plane direction in an opposite phase to that of the drive vibrating arms, and a second detection mode in which the drive vibrating arms flexurally vibrate oppositely to each other in the out-of-plane direction in the same phase as the action direction of the Coriolis force and the detection vibrating arms flexurally vibrate oppositely to each other in the out-of-plane direction in the same phase as that of the drive vibrating arms.
Abstract:
A double-side tuning fork-type bending vibration piece having a basal part, a pair of drive vibration arms, a pair of detection vibration arms, drive electrodes and detection electrodes includes adjustment films of a metallic material or the like formed in connecting areas between the vibration arms and the basal part. The adjustment films are formed in such a way as to cover an area of tapered portions formed in connecting parts between the drive vibration arms and the basal part, an area of the basal part near the tapered portions and an area of the drive vibration arms. While monitoring a detection current outputted from the detection electrodes when the drive vibration arms are excited in driving mode, the adjustment films are partly deleted by laser irradiation so that the detection current becomes 0.
Abstract:
A bending vibration piece has a pair of drive vibration arms and a pair of detection vibration arms in an opposite direction thereto which are connected to a supporting part. The supporting part has recessed portions formed on both lateral parts in a direction of width, and a through-hole formed substantially at the center in a plane part of the supporting part and more toward the drive vibration arms than the recessed portions are. On a surface of the supporting part, drive electrode pads are arranged toward the drive vibration arms and detection electrode pads are arranged toward the detection vibration arms, with these electrode pads being separated from each other in a longitudinal direction by the recessed portions on both lateral part of the supporting part and the through-hole in the plane part.