摘要:
There is provided a method for manufacturing a three-dimensional shaped object. The method of the present invention comprises the repeated steps of: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam; wherein only the surface portion of the solidified layer, to which a force is applied when the three-dimensional shaped object is used, is subjected to a machining process.
摘要:
An apparatus for making a three-dimensional object includes a table, a powdery layer-former that forms a powdery layer on the table, and an optical beam-irradiator that irradiates an optical beam on a predetermined region of the powdery layer to sinter the predetermined region of the powdery layer. A chamber for accommodating the table and the powdery layer-former and a lid for opening and closing an opening defined in the chamber at a location immediately above an optical beam-irradiating range are provided. The three-dimensional object is taken out from the chamber through the opening upon completion of the sintering, and the optical beam-irradiator is disposed at a position deviated from immediately above the optical beam-irradiating range to obliquely irradiate the optical beam on the powdery layer.
摘要:
Disclosed is a mold for resin injection molding that can realize rapid heating or cooling. A resin injection molding mold includes a cavity mold and a core mold and is produced on a base plate by metal photofabrication. The cavity mold is provided with a cavity warm water circuit for allowing warm water for heating to flow and a cavity cold water circuit for allowing cold water for cooling to flow. The core mold is also provided with a core warm water circuit and a core cold water circuit. The core mold includes an air blowing passage for feeding warm air or cold air into a resin molding part and a suction passage (36) for sucking a gas within the resin molding part. The resin molding part side of the air blowing passage and the suction passage is formed of a low-density shaping part that has a low metallic powder sintered density and is permeable to gas. Warm air or cold air can be blown through the low-density shaping part, whereby rapid heating or cooling of the resin injection molding mold can be realized.
摘要:
In a method for producing a three-dimensionally shaped object, (i) a solidified layer is formed by irradiating a light beam on a specified portion of a powder layer to sinter or melt the specified portion. Further, (ii) another solidified layer is formed by placing a new powder layer on the solidified layer obtained in step (i), and irradiating the light beam on a specified portion of the new powder layer to sinter or melt the specified portion of the new powder layer. The steps (i) and (ii) are repeated to produce a three-dimensionally shaped object. In the method, a gas is supplied to a mirror used in scanning the light beam.
摘要:
There is provided a method for manufacturing a three-dimensional shaped object, comprising the steps of: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing sintering of the powder of the predetermined portion or melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, and then irradiating another predetermined portion of the new powder layer with the light beam, the steps (i) and (ii) being repeatedly performed, wherein the three-dimensional shaped object is manufactured such that it has three different solidified portions of high-density, intermediate-density and low-density solidified portions in at least a part of the object, and wherein the intermediate-density solidified portion is formed to be located in a part of a surface of the three-dimensional shaped object.
摘要:
A three-dimensional object of a desired shape is made by irradiating an optical beam on a metal powder layer to form a sintered layer and by laminating such sintered layer one above another. A metal powder composition for use in making such a three-dimensional object includes an iron-based powder material, a nickel and/or nickel alloy powder material, a copper and/or copper alloy powder material, and a graphite powder material. The graphite powder material acts to enhance the wettability during melting and to reduce microcracks during solidification.
摘要:
An apparatus for making a three-dimensional object includes a powdery layer-forming unit for forming a powdery layer on a table and an optical beam-irradiating unit for irradiating an optical beam on a predetermined region of the powdery layer to sinter the predetermined region. The optical beam-irradiating unit is disposed at a position spaced from immediately above an optical beam-irradiating range to obliquely irradiate the optical beam on the powdery layer. Because fumes generated by irradiating and heating the powdery layer with the optical beam rise towards a position immediately above them, the optical beam is irradiated from the position spaced from immediately above the optical beam-irradiating range, thereby reducing a cloud of the optical beam-irradiating unit that may be caused by the fumes.
摘要:
There is provided a stacked-layers forming device including a powder layer-forming part for forming a powder layer, an optical device for forming a solidified layer by irradiating a predetermined portion of the powder layer with a light beam and a powder replenishing means for supplying the powder material to above a base on which the powder layer and the solidified layer are stacked or onto an upper surface of a base frame which surrounds the base. The powder replenishing means includes an approximately cylindrical member in which the powder material is charged and a screw member which is installed within the approximately cylindrical member wherein a rotation of the screw member conveys the powder material in the approximately cylindrical member. The stacked-layers forming device of the present invention enables it to not only curb its height since the powder material can be conveyed in a screw manner, but also achieve an improved cycle of the material since the powder material can be conveyed in one direction.
摘要:
A method for manufacturing a three-dimensional shaped object wherein the warping of the base plate is suitably addressed. The method of the present invention comprises: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer on a base plate with a light beam, thereby allowing sintering of the powder of the predetermined portion or melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, and then irradiating another predetermined portion of the new powder layer with the light beam, the steps (i) and (ii) being repeatedly performed; wherein, prior to or upon the manufacturing of the three-dimensional shaped object, the base plate is subjected to a heat treatment, thereby causing the base plate to be warped, and at least a lower surface of the warped base plate is subjected to a flattening process.
摘要:
An apparatus for making a three-dimensional object includes a table, a powdery layer-former that forms a powdery layer on the table, and an optical beam-irradiator that irradiates an optical beam on a predetermined region of the powdery layer to sinter the predetermined region of the powdery layer. A chamber for accommodating the table and the powdery layer-former and a lid for opening and closing an opening defined in the chamber at a location immediately above an optical beam-irradiating range are provided. The three-dimensional object is taken out from the chamber through the opening upon completion of the sintering, and the optical beam-irradiator is disposed at a position deviated from immediately above the optical beam-irradiating range to obliquely irradiate the optical beam on the powdery layer.