摘要:
A magnetoresistive head comprises a free magnetic layer that has first and second free magnetic films sandwiching a non-magnetic intermediate film therebetween, the respective magnetizing directions of the first and the second free magnetic films are antiparallel. The length of the free magnetic layer in the direction of the track width is 200 nm or less, and a difference between a product of saturation magnetic flux density and a film thickness of the first free magnetic film, and that of the second free magnetic film is within a range from 1 to 3 nmT. By this structure, the variation of output and the variation of asymmetry is greatly decreased at a track width of 200 nm or less.
摘要:
Multiple thin films of spin-valve GMR sensor are formed in a trapezoidal cross-sectional shape by laminating an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic conductive layer, a free magnetic layer and a nonmagnetic protective layer on a lower insulated gap layer. The amount of etching of the lower insulated gap layer produced in the process of patterning the spin-valve giant magnetoresistive layers into the multiple thin films of spin-valve GMR sensor is 10 nm or less. Further, the angle θ which the tangent line of each side face of the multiple thin films to the middle line of the free magnetic layer in its thickness direction forms with respect to the middle line of the free magnetic layer becomes 45 degrees or more. This structure makes it possible to provide such a spin-valve giant magnetoresistive head that it meets the requirements for securing constant breakdown voltage and preventing instability of MR output voltage waveform.
摘要:
Making thinner the magnetic domain control layer deteriorates the magnetic properties. Also, disturbances tend to increase the magnetization dispersion of the magnetic domain control layer, thereby lowering the magnetic domain control bias magnetic field. In one embodiment of the invention, a first magnetic domain control layer is provided in the proximity of the free layer of the GMR sensor in such a way that the track width is Twr1. Outside the first magnetic domain control layer is provided a second magnetic domain control layer. The second magnetic domain control layer placed outside the first magnetic domain control layer gives the first magnetic domain control layer an external bias field. The amount of magnetization of the tip of the first magnetic domain control layer is polarized and increased by the bias magnetic field from the second magnetic domain control layer. This causes the first magnetic domain control layer to apply a strong bias magnetic field having a lower dispersion to the free layer of the GMR sensor.
摘要:
Multiple thin films of spin-valve GMR sensor are formed in a trapezoidal cross-sectional shape by laminating an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic conductive layer, a free magnetic layer and a nonmagnetic protective layer on a lower insulated gap layer. The amount of etching of the lower insulated gap layer produced in the process of patterning the spin-valve giant magnetoresistive layers into the multiple thin films of spin-valve GMR sensor is 10 nm or less. Further, the angle θ which the tangent line of each side face of the multiple thin films to the middle line of the free magnetic layer in its thickness direction forms with respect to the middle line of the free magnetic layer becomes 45 degrees or more. This structure makes it possible to provide such a spin-valve giant magnetoresistive head that it meets the requirements for securing constant breakdown voltage and preventing instability of MR output voltage waveform.
摘要:
Making thinner the magnetic domain control layer deteriorates the magnetic properties. Also, disturbances tend to increase the magnetization dispersion of the magnetic domain control layer, thereby lowering the magnetic domain control bias magnetic field. In one embodiment of the invention, a first magnetic domain control layer is provided in the proximity of the free layer of the GMR sensor in such a way that the track width is Twr1. Outside the first magnetic domain control layer is provided a second magnetic domain control layer. The second magnetic domain control layer placed outside the first magnetic domain control layer gives the first magnetic domain control layer an external bias field. The amount of magnetization of the tip of the first magnetic domain control layer is polarized and increased by the bias magnetic field from the second magnetic domain control layer. This causes the first magnetic domain control layer to apply a strong bias magnetic field having a lower dispersion to the free layer of the GMR sensor.
摘要:
A magnetoresistive head comprises a free magnetic layer that has first and second free magnetic films sandwiching a non-magnetic intermediate film therebetween, the respective magnetizing directions of the first and the second free magnetic films are antiparallel. The length of the free magnetic layer in the direction of the track width is 200 nm or less, and a difference between a product of saturation magnetic flux density and a film thickness of the first free magnetic film, and that of the second free magnetic film is within a range from 1 to 3 nmT. By this structure, the variation of output and the variation of asymmetry is greatly decreased at a track width of 200 nm or less.
摘要:
Making a geometric track width small does not decrease a read track width, resulting only in an output being reduced. In one embodiment, a seed layer, an underlayer, and a magnetic domain control layer are laminated on both sides of a magnetoresistive sheet unit. A lower electrode film is thinly formed on an upper portion of the magnetic domain control film. A portion of the lower electrode film near the magnetoresistive sheet unit does not protrude substantially from an upper surface of the magnetoresistive sheet unit. Should the portion protrude, a step from the upper surface of the magnetoresistive sheet unit is about 14 nm or less. This portion and the upper surface of the magnetoresistive sheet unit are formed into a flat surface. An upper electrode film is formed thickly on an upper portion of the lower electrode film on an outside thereof so as to circumvent the flat surface. A protective layer, an upper gap film, and an upper magnetic shield film are also formed.
摘要:
Multiple thin films of spin-valve GMR sensor are formed in a trapezoidal cross-sectional shape by laminating an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic conductive layer, a free magnetic layer and a nonmagnetic protective layer on a lower insulated gap layer. The amount of etching of the lower insulated gap layer produced in the process of patterning the spin-valve giant magnetoresistive layers into the multiple thin films of spin-valve GMR sensor is 10 nm or less. Further, the angle &thgr; which the tangent line of each side face of the multiple thin films to the middle line of the free magnetic layer in its thickness direction forms with respect to the middle line of the free magnetic layer becomes 45 degrees or more. This structure makes it possible to provide such a spin-valve giant magnetoresistive head that it meets the requirements for securing constant breakdown voltage and preventing instability of MR output voltage waveform.
摘要:
In one embodiment, a seed layer, an underlayer, and a magnetic domain control layer are laminated on both sides of a magnetoresistive sheet unit. A lower electrode film is thinly formed on an upper portion of the magnetic domain control film. A portion of the lower electrode film near the magnetoresistive sheet unit does not protrude substantially from an upper surface of the magnetoresistive sheet unit. Should the portion protrude, a step from the upper surface of the magnetoresistive sheet unit is about 14 nm or less. This portion and the upper surface of the magnetoresistive sheet unit are formed into a flat surface. An upper electrode film is formed thickly on an upper portion of the lower electrode film on an outside thereof so as to circumvent the flat surface. A protective layer, an upper gap film, and an upper magnetic shield film are also formed.
摘要:
A magnetoresistive head comprises a free magnetic layer that has first and second free magnetic films sandwiching a non-magnetic intermediate film therebetween, the respective magnetizing directions of the first and the second free magnetic films are antiparallel. The length of the free magnetic layer in the direction of the track width is 200 nm or less, and a difference between a product of saturation magnetic flux density and a film thickness of the first free magnetic film, and that of the second free magnetic film is within a range from 1 to 3 nmT. By this structure, the variation of output and the variation of asymmetry is greatly decreased at a track width of 200 nm or less.