Abstract:
Provided is a Micro-Electro-Mechanical Systems (MEMS) device for actuating a gimbaled element, the device including a symmetric electromagnetic actuator for actuating one degree of freedom (DOF) and a symmetric electrostatic actuator for actuating the second degree of freedom.
Abstract:
A method for manufacturing a conductive coil, the method comprising using a semiconductor fabrication process (e.g. TSV) to manufacture a coil, typically a planar spiral conductive coil.
Abstract:
A method for manufacturing a conductive coil, the method comprising using a semiconductor fabrication process (e.g. TSV) to manufacture a coil, typically a planar spiral conductive coil.
Abstract:
Provided is a Micro-Electro-Mechanical Systems (MEMS) device for actuating a gimbaled element, the device including a symmetric electromagnetic actuator for actuating one degree of freedom (DOF) and a symmetric electrostatic actuator for actuating the second degree of freedom.
Abstract:
A method for providing a vertical comb drive. The method comprises: fabricating a device comprising rotor comb element, the rotor element comb comprising a main body and a plurality of substantially parallel extensions in a comb arrangement, and at least one of a plurality of stator comb elements, comprising a main body and a plurality of substantially parallel extensions in a comb arrangement, adapted to be interlaced with the rotor, all on a single layer of a substrate.
Abstract:
A resonance locking system for a pico-projector, the system comprising a resonance frequency sensor operative for sensing change in resonance frequency of a miniature mechanical device (10) including a moving mirror assembly having a driving frequency, by comparing a current resonance frequency to a reference; and a feedback loop changing at least one aspect of use of the miniature moving mirror assembly responsive to a current value of the resonance frequency measured by the sensor.
Abstract:
A resonance locking system for a pico-projector, the system comprising a resonance frequency sensor operative for sensing change in resonance frequency of a miniature mechanical device (10) including a moving mirror assembly having a driving frequency, by comparing a current resonance frequency to a reference; and a feedback loop changing at least one aspect of use of the miniature moving mirror assembly responsive to a current value of the resonance frequency measured by the sensor.