Abstract:
A vital-signs patch for a patient monitoring system is disclosed. The patch consists of a housing that is configured to be worn on the skin of a patient. The housing contains a radio, one or more sensor interfaces, a processor, and a battery. The processor can selectably turn portions of the processor off and on and selectably turn power off and on to at least a portion of the sensor interfaces and radio. The processor includes a timer that, each time the timer times out, will turn all the parts of the processor on and start a new timing period. When the processor receives a signal, the processor will turn off power to at least a portion of the processor and at least a portion of the sensor interfaces.
Abstract:
A healthcare monitoring system includes a plurality of patient wearable sensor devices for the purpose of monitoring physiological data, each sensor device including a radio frequency transceiver. A plurality of base stations are provided at respective fixed locations within a healthcare facility, each base station including a radio frequency transceiver for communicating with one or more of the sensor devices for the purpose of receiving monitored physiological data. A central server is coupled to the base stations for the purpose of receiving and recording monitored physiological data. Each sensor device is arranged in use to attach to a first base station that is within range, and to attach to a second, different base station that is within range when contact with the first base station is lost, attachment of the sensor device to a base station being registered with the central server.
Abstract:
A vital-signs patch for a patient monitoring system is disclosed. The patch consists of a housing that is configured to be worn on the skin of a patient. The housing contains a radio, one or more sensor interfaces, a processor, and a battery. The processor can selectably turn portions of the processor off and on and selectably turn power off and on to at least a portion of the sensor interfaces and radio. The processor includes a timer that, each time the timer times out, will turn all the parts of the processor on and start a new timing period. When the processor receives a signal, the processor will turn off power to at least a portion of the processor and at least a portion of the sensor interfaces.
Abstract:
A healthcare monitoring system includes a plurality of patient wearable sensor devices for the purpose of monitoring physiological data, each sensor device including a radio frequency transceiver. A plurality of base stations are provided at respective fixed locations within a healthcare facility, each base station including a radio frequency transceiver for communicating with one or more of the sensor devices for the purpose of receiving monitored physiological data. A central server is coupled to the base stations for the purpose of receiving and recording monitored physiological data. Each sensor device is arranged in use to attach to a first base station that is within range, and to attach to a second, different base station that is within range when contact with the first base station is lost, attachment of the sensor device to a base station being registered with the central server.