Abstract:
A pressure relief valve includes a housing including an inlet chamber adapted to be in communication with an outlet of a pump and an outlet chamber adapted to be in communication with a pump inlet. The housing includes a bore having a first end in communication with the inlet chamber and a main spill aperture in communication with the bore and the outlet chamber. A piston includes an orifice and an axially spaced apart aperture. The piston is axially moveable within the bore between a first position whereat the piston seals the inlet chamber from the outlet chamber, a second position whereat the inlet and outlet chambers are in fluid communication with one another via only the orifice, and a third position whereat the inlet and outlet chambers are in fluid communication with one another via the orifice and the aperture. A spring biases the piston toward the first position.
Abstract:
A dual outlet pressure pump includes a housing having first and second inlets as well as first and second outlets. A plurality of vanes are driven by a rotor. An asymmetric rotor cavity includes a first surface engaged by the vanes shaped to at least partially define a plurality of low pressure, high volume chambers. The cavity also includes a second surface engaged by the vanes shaped to at least partially define a plurality of high pressure, low volume chambers. Rotation of the rotor and vanes substantially simultaneously pumps a high volume of low pressure fluid between the first inlet and the first outlet and a low volume of high pressure fluid between the second inlet and the second outlet.
Abstract:
Systems and methods for protecting from harmful software on a computer are disclosed. The systems and methods may include observing potentially harmful software on the computer at runtime, determining that at least part of the potentially harmful software is harmful software and removing effects of the harmful software from the computer based on at least the observing and the determining, despite attempts by the harmful software to resist the removing.
Abstract:
A variable capacity vane includes a pump control ring which is moveable to alter the capacity of the pump and the pump can be operated at either of at least two selected equilibrium pressures. The pump ring is moved by at least first and second control chambers, the control chambers abutting the control ring such that pressurized fluid supplied to them acts on the pump control ring to move the pump control ring to reduce the volumetric capacity of the pump. When pressurized fluid is supplied to only one control chamber, the pump operates at a first equilibrium pressure and when pressurized fluid is also supplied to the second chamber, the pump operates at a second equilibrium pressure. Pressurized fluid can also be supplied only to the second control chamber to operate the pump at a third equilibrium pressure and/or additional control chambers can be provided if required.
Abstract:
A pump system includes pump having a control feature which, responsive to a supply of pressurized working fluid, reduces the pressure of the working fluid pressurized by the pump. The control feature is connected to the output of the pump by a regulating valve. The control feature receives pressurized working fluid to decrease the output of the pump in response to the pressure of the supplied working fluid. A regulating valve selectively connects the pressurized working fluid to the control feature. The regulating valve has a control port to receive pressurized working fluid from the pump to urge the valve to a closed position against a biasing force. A controllable valve is operable to interrupt the supply of pressurized working fluid to control port to alter the output pressure of the pump.
Abstract:
A pump system includes a fixed or variable capacity pump and a speed-related control mechanism to alter the capacity of a variable capacity pump or to alter the relief pressure of a fixed capacity pump in response to changes in the operating speed of the pump. A pressure generator comprising a volume of working fluid is rotated at a speed related to the operating speed of the pump and creates a forced vortex in the working fluid. The pressure induced in the working fluid of the forced vortex is used as a speed related control to alter the discharge pressure of the pump as desired.
Abstract:
A variable displacement vane pump which includes an enhanced discharge port. The enhanced discharge port reduces areas of high pressure in the discharge port which would otherwise occur as the pressurized working fluid reverses its direction of flow to enter the discharge port. By reducing the areas of high pressure, the back torque on the pump rotor is reduced and the energy efficiency of the pump is enhanced. In one embodiment, the pivot for the pump control ring is located radially outwardly from a conventional location, to allow for a discharge recess to be formed in the control ring, adjacent the discharge port, and extending past the pivot to the pump outlet. In a second embodiment, the discharge recess is formed in the control ring around the pivot and a seal is provided on the control ring to inhibit leakage of pressurized working fluid past the control ring. In a third embodiment, a secondary discharge port is provided adjacent the discharge recess formed in the control ring and pressurized working fluid in the discharge recess can exit the discharge recess through the secondary discharge port which is in fluid communication with the pump outlet.
Abstract:
A pump system for supplying pressurized hydraulic fluid to a hydraulic valve actuation system for operating engine valves of an internal combustion engine comprises a substantially conventional main pump, driven by the engine, which supplies the necessary volume of pressurized hydraulic fluid when the engine is running. The system comprises a booster pump that supplies in conjunction with the main pump the necessary volume of hydraulic fluid during starting/cranking of the engine. The main pump is preferably designed and constructed for operating efficiency during engine operating conditions while the booster pump is preferably designed and constructed for operating efficiency during cranking/starting of the engine.
Abstract:
A variable capacity vane pump is provided, the pump having a pump control ring which is moveable to alter the capacity of the pump and the pump can be operated at either of at least two selected equilibrium pressures. The pump ring is moved by at least first and second control chambers, the control chambers abutting the control ring such that pressurized fluid supplied to them acts on the pump control ring to move the pump control ring to reduce the volumetric capacity of the pump. When pressurized fluid is supplied to only one control chamber, the pump operates at a first equilibrium pressure and when pressurized fluid is also supplied to the second chamber, the pump operates at a second equilibrium pressure. If desired, pressurized fluid can also be supplied only to the second control chamber to operate the pump at a third equilibrium pressure and/or additional control chambers can be provided if required.
Abstract:
A pump system includes pump having a control feature which, responsive to a supply of pressurized working fluid, reduces the pressure of the working fluid pressurized by the pump. The control feature is connected to the output of the pump by a regulating valve. The control feature receives pressurized working fluid to decrease the output of the pump in response to the pressure of the supplied working fluid. A regulating valve selectively connects the pressurized working fluid to the control feature. The regulating valve has a control port to receive pressurized working fluid from the pump to urge the valve to a closed position against a biasing force. A controllable valve is operable to interrupt the supply of pressurized working fluid to control port to alter the output pressure of the pump.