摘要:
The invention relates to a photovoltaic system for feeding three-phase current to a power grid that includes several monophase or three-phase photovoltaic inverters that can be connected to the power grid at the output end and are each fitted with a disconnecting device at the output end. The system includes several photovoltaic generators that are connected to the input end of the photovoltaic inverters. A central control and monitoring unit is connected between the photovoltaic inverters and the power grid. The control and monitoring unit has a grid monitoring device at the feeding point to the grid to measure one or more grid parameters. At least one communication link is provided between the individual photovoltaic inverters or the individual disconnecting devices and the connected central control and monitoring unit such that the connecting devices can disconnect the individual photovoltaic inverters from the power grid by means of a control instruction signal of the communication link. The central control and monitoring unit includes a load unbalance recognition component and a load unbalance regulation component, wherein the regulation includes limiting the power variation between the individual phases to a predetermined value.
摘要:
An inverter with galvanic separation including a resonant converter and an upstream mounted boost chopper is intended to provide galvanic separation in the context of a variable input and output voltage as it exists in photovoltaic systems, with the efficiency being intended to be optimized over the entire input voltage range. This is achieved in that a boost chopper or a buck chopper is mounted upstream of the resonant converter.
摘要:
On an inverter (1) for converting an electric direct voltage, in particular of a photovoltaic direct voltage source into an alternating voltage with a direct voltage input with two terminals (DC+, DC−) and one alternating voltage output with two terminals (AC1, AC2) and with one bridge circuit including semiconductor switching elements (S1-S6), said bridge circuit comprising one first bridge branch (Z1) including four switching elements (S1-S4) and one second bridge branch (Z2) including two additional switching elements (S5, S6) as well as a freewheeling circuit provided with additional diodes (D7, D8), the efficiency is further increased without high frequency interferences and capacitive leakage currents having the possibility to occur on the generator side. This is achieved in that a respective one of the freewheeling diodes (D7, D8) forms a freewheeling branch together with a respective one of the switching elements (S2, S3) located in the first bridge branch (Z1), said freewheeling branch carrying a freewheeling current in a condition decoupled from the direct voltage.
摘要:
A method of converting a direct voltage generated by a decentralized power supply system into three-phase alternating voltage by means of a plurality of single-phase inverters (WR1-WR3), said alternating voltage being provided for supplying an electric mains, is intended to avoid inadmissible load unbalances using single-phase inverters. This is achieved in that, upon failure of one inverter (WR1-WR3), an asymmetrical power supply distribution is reduced by limiting the output of the other inverters. The method makes it possible to simplify three-phase voltage monitoring.
摘要:
The invention is directed to an inverter including a casing (1) with at least two chambers (2, 3), the one chamber (3) comprising the display (11) of a communication unit, said display (11) being pivotally disposed in the chamber (3).
摘要:
The subject matter of the invention is an inverter including a casing (1), said casing (1) including at least two casing chambers (2, 3) that are each closable through a separate cover (2a, 3a).
摘要:
A method of activating a Multi-String inverter for photovoltaic generators (1a, 1b) of a photovoltaic plant (6), the Multi-String inverter incorporating on the input side a separate DC-DC converter (2a, 2b) for each generator string (photovoltaic generator) (1a, 1b) and each output of the DC-DC converters (2a, 2b) being connected in parallel and to an input of a DC-AC converter (3) and the DC-AC converter (3) being connected with an alternating current mains (4) for feeding into the mains aims at improving efficiency. This is achieved in that one or several electrical variables, namely input current, input voltage and/or input power are measured at each DC-DC converter (2a, 2b) and at least one of the DC-DC converters (2a, 2b) changing its operating condition as a is function of this measurement when a limit value and/or a range is exceeded in such a manner that its power loss is reduced so that the energy yield of the photovoltaic plant (6) is increased.
摘要:
An inverter is devised to avoid high-frequency voltages at input terminals and to allow good efficiency thanks to its simple and cost-optimized circuit layout. This is achieved by a method of converting a direct current voltage, more specifically from a photovoltaic source of direct current voltage, into an alternating current voltage at a frequency through a bridge circuit comprising switching elements (V1-V4) and free-wheeling elements (D1-D4), said switching elements (V1-V4) being on the one side gated at the frequency and on the other side clocked at a high clock rate, a direct current voltage circuit, an alternating current voltage circuit and a plurality of free-wheeling phases being provided. It is provided that, during the free-wheeling phases, the alternating current voltage circuit is decoupled from the direct current voltage circuit by means of a switching element disposed in the direct current voltage circuit, a free-wheeling current flowing through one of the free-wheeling elements (D1) in the bridge circuit when in the decoupled state.
摘要:
A method of activating a Multi-String inverter for photovoltaic generators (1a, 1b) of a photovoltaic plant (6), the Multi-String inverter incorporating on the input side a separate DC-DC converter (2a, 2b) for each generator string (photovoltaic generator) (1a, 1b) and each output of the DC-DC converters (2a, 2b) being connected in parallel and to an input of a DC-AC converter (3) and the DC-AC converter (3) being connected with an alternating current mains (4) for feeding into the mains aims at improving efficiency. This is achieved in that one or several electrical variables, namely input current, input voltage and/or input power are measured at each DC-DC converter (2a, 2b) and at least one of the DC-DC converters (2a, 2b) changing its operating condition as a function of this measurement when a limit value and/or a range is exceeded in such a manner that its power loss is reduced so that the energy yield of the photovoltaic plant (6) is increased.