Focused crawling to identify potentially malicious sites using Bayesian URL classification and adaptive priority calculation
    1.
    发明授权
    Focused crawling to identify potentially malicious sites using Bayesian URL classification and adaptive priority calculation 有权
    使用贝叶斯网址分类和自适应优先级计算,集中抓取来识别潜在的恶意网站

    公开(公告)号:US09298824B1

    公开(公告)日:2016-03-29

    申请号:US12832062

    申请日:2010-07-07

    CPC classification number: G06F17/30864 G06F21/56 H04L63/14 H04L67/02

    Abstract: For each page of a set, a Bayesian classification of the URL associated with the page is performed, and a maliciousness probability is assigned to the URL based on the Bayesian classification. A traversal priority is assigned to each page of the set, the assigned traversal priorities initially directing a breadth first traversal of the set of pages. The assigned traversal priorities of a subset of the pages of the set are modified to direct higher priority traversals, responsive to the maliciousness probabilities of the URLs corresponding to the pages of the subset. Each page of the set is traversed in the order specified by the traversal priorities, and analyzed during traversal to determine whether the page is malicious.

    Abstract translation: 对于集合的每个页面,执行与页面相关联的URL的贝叶斯分类,并且基于贝叶斯分类将恶意概率分配给URL。 遍历优先级被分配给集合的每个页面,分配的遍历优先级最初指导该页面的宽度优先遍历。 响应于对应于该子集的页面的URL的恶意概率,修改集合的页面的子集的分配的遍历优先级以引导更高优先级遍历。 集合的每个页面以遍历优先级指定的顺序遍历,并在遍历期间进行分析,以确定页面是否是恶意的。

    Systems and methods for detecting suspicious web pages
    2.
    发明授权
    Systems and methods for detecting suspicious web pages 有权
    用于检测可疑网页的系统和方法

    公开(公告)号:US09356941B1

    公开(公告)日:2016-05-31

    申请号:US12857119

    申请日:2010-08-16

    Abstract: A computer-implemented method for detecting suspicious web pages. The method may include 1) identifying a plurality of malicious web pages; 2) establishing a classification model for identifying suspicious web pages, the classification model being based at least in part on the plurality of malicious web pages; 3) identifying an additional web page; 4) classifying the additional web page as suspicious using the classification model; 5) analyzing the additional web page to determine whether the additional web page is malicious; 6) determining that the additional web page is malicious based on the analysis; and 7) updating the classification model based at least in part on the determination. Various other methods, systems, and computer-readable media are also disclosed.

    Abstract translation: 一种用于检测可疑网页的计算机实现的方法。 该方法可以包括:1)识别多个恶意网页; 2)建立用于识别可疑网页的分类模型,所述分类模型至少部分地基于所述多个恶意网页; 3)识别额外的网页; 4)使用分类模型将附加网页分类为可疑; 5)分析附加网页以确定附加网页是否是恶意的; 6)基于分析确定附加网页是恶意的; 以及7)至少部分地基于所述确定来更新所述分类模型。 还公开了各种其它方法,系统和计算机可读介质。

    Automating user interface navigation
    3.
    发明授权
    Automating user interface navigation 有权
    自动化用户界面导航

    公开(公告)号:US08171406B1

    公开(公告)日:2012-05-01

    申请号:US12544215

    申请日:2009-08-19

    CPC classification number: G06F9/451

    Abstract: A system processes a set of instructions, each of which indicates an action to perform on a user interface. The system does not have prior information concerning the layout of the user interface, nor does the system interact with the user interface through an automation API. For each instruction in the set, the system automatically performs the indicated action on the user interface. To do so, the system identifies the selected control on an active window, and determines whether it is the control to activate in order to perform the indicated action. If so, the system generates an input signal configured to activate the selected control, and sends the input signal to the user interface. If not, the system selects a new control and determines whether it is the desired one. The system cycles through the controls to find the desired one to activate.

    Abstract translation: 系统处理一组指令,每个指令指示在用户界面上执行的动作。 该系统没有关于用户界面布局的先前信息,系统也不通过自动化API与用户界面交互。 对于集合中的每个指令,系统自动在用户界面上执行指示的操作。 为此,系统会在活动窗口中识别所选择的控件,并确定是否为激活控件以执行指示的操作。 如果是,则系统生成配置成激活所选控制的输入信号,并将输入信号发送到用户界面。 如果不是,系统将选择一个新的控件并确定它是否是所需的控件。 系统循环通过控件找到所需的激活。

    Social static ranking for search
    4.
    发明授权
    Social static ranking for search 有权
    搜索社交静态排名

    公开(公告)号:US08935255B2

    公开(公告)日:2015-01-13

    申请号:US13560889

    申请日:2012-07-27

    Abstract: In one embodiment, one or more computing devices assign each of a plurality of nodes of a graph of a social-networking system to one of a plurality of search indices. Each search index corresponds to a node type, and each node assigned to a search index is of the node type that the search index corresponds to. For each search index, the one or more computing devices determine a value for each node assigned to the search index based at least in part on edges connected to the node in the graph and rank the nodes assigned to the search index based at least in part on their values. The one or more computing devices provide the search indices for storage to facilitate responding to queries encompassing objects represented by the nodes assigned to the search indices.

    Abstract translation: 在一个实施例中,一个或多个计算设备将社交网络系统的图形的多个节点中的每一个分配给多个搜索索引之一。 每个搜索索引对应于节点类型,并且分配给搜索索引的每个节点是搜索索引对应的节点类型。 对于每个搜索索引,一个或多个计算设备至少部分地基于连接到图中的节点的边缘来确定分配给搜索索引的每个节点的值,并且至少部分地基于分配给搜索索引的节点排序 对他们的价值观。 一个或多个计算设备提供用于存储的搜索索引以便于响应包含由分配给搜索索引的节点表示的对象的查询。

    Social Static Ranking for Search
    5.
    发明申请
    Social Static Ranking for Search 有权
    搜索社交静态排名

    公开(公告)号:US20140032564A1

    公开(公告)日:2014-01-30

    申请号:US13560889

    申请日:2012-07-27

    Abstract: In one embodiment, one or more computing devices assign each of a plurality of nodes of a graph of a social-networking system to one of a plurality of search indices. Each search index corresponds to a node type, and each node assigned to a search index is of the node type that the search index corresponds to. For each search index, the one or more computing devices determine a value for each node assigned to the search index based at least in part on edges connected to the node in the graph and rank the nodes assigned to the search index based at least in part on their values. The one or more computing devices provide the search indices for storage to facilitate responding to queries encompassing objects represented by the nodes assigned to the search indices.

    Abstract translation: 在一个实施例中,一个或多个计算设备将社交网络系统的图形的多个节点中的每一个分配给多个搜索索引之一。 每个搜索索引对应于节点类型,并且分配给搜索索引的每个节点是搜索索引对应的节点类型。 对于每个搜索索引,一个或多个计算设备至少部分地基于连接到图中的节点的边缘来确定分配给搜索索引的每个节点的值,并且至少部分地基于分配给搜索索引的节点排序 对他们的价值观。 一个或多个计算设备提供用于存储的搜索索引以便于响应包含由分配给搜索索引的节点表示的对象的查询。

    SPONSORED ADVERTISEMENT RANKING AND PRICING IN A SOCIAL NETWORKING SYSTEM
    6.
    发明申请
    SPONSORED ADVERTISEMENT RANKING AND PRICING IN A SOCIAL NETWORKING SYSTEM 审中-公开
    赞助广告在社交网络系统中的排名和定价

    公开(公告)号:US20140019261A1

    公开(公告)日:2014-01-16

    申请号:US13545266

    申请日:2012-07-10

    CPC classification number: G06Q30/02 G06Q30/0241 G06Q50/01

    Abstract: A social networking system (SNS) provides sponsored stories and organic stories about actions taken by other SNS users to a viewing user. Organic stories are selected based on the likelihood the viewing user is interested in their content. While advertisers compensate the SNS for presentation of sponsored stories, the sponsored stories also include information about actions by other SNS users. To increase the likelihood the viewing user interacts with sponsored stories, a common communication channel is used to present both the sponsored stories and the organic stories. To simplify selection of organic stories and sponsored stories, the SNS determines a common unit of measurement for both and makes selections based on the common unit of measurement.

    Abstract translation: 社交网络系统(SNS)提供了有关其他SNS用户对观看用户采取的行动的赞助故事和有机故事。 有机故事根据观看用户对其内容感兴趣的可能性进行选择。 虽然广告商补偿SNS介绍赞助故事,但赞助的故事还包括其他SNS用户的行为信息。 为了增加观看用户与赞助故事交互的可能性,使用通用通信频道来呈现赞助故事和有机故事。 为了简化有机故事和赞助故事的选择,SNS确定了两者的常用测量单位,并根据常用的测量单位进行选择。

    Sponsored advertisement ranking and pricing in a social networking system

    公开(公告)号:US10565598B2

    公开(公告)日:2020-02-18

    申请号:US13545266

    申请日:2012-07-10

    Abstract: A social networking system (SNS) provides sponsored stories and organic stories about actions taken by other SNS users to a viewing user. Organic stories are selected based on the likelihood the viewing user is interested in their content. While advertisers compensate the SNS for presentation of sponsored stories, the sponsored stories also include information about actions by other SNS users. To increase the likelihood the viewing user interacts with sponsored stories, a common communication channel is used to present both the sponsored stories and the organic stories. To simplify selection of organic stories and sponsored stories, the SNS determines a common unit of measurement for both and makes selections based on the common unit of measurement.

    Systems and methods for emulating the behavior of a user in a computer-human interaction environment
    8.
    发明授权
    Systems and methods for emulating the behavior of a user in a computer-human interaction environment 有权
    用于在计算机 - 人类交互环境中模拟用户行为的系统和方法

    公开(公告)号:US08266091B1

    公开(公告)日:2012-09-11

    申请号:US12506962

    申请日:2009-07-21

    CPC classification number: G06F11/3612 G06F21/552 G06F2221/031 G06F2221/034

    Abstract: A computer-implemented method for emulating the behavior of a user in a computer-human interaction environment is described. An image of a window and data relating to positions of clicks executed within the image are received. A probabilistic model is created to estimate a probability of a click being executed in a region of a window. Clicks, in accordance with the probabilistic model, are executed within windows associated with a plurality of applications. A clicks distribution model is created based on the position of the clicks executed within the windows of the plurality of applications. Clicks, in accordance with the clicks distribution model, are executed within a window associated with an application being tested.

    Abstract translation: 描述了用于在计算机 - 人类交互环境中模拟用户的行为的计算机实现的方法。 接收窗口的图像和与图像内执行的点击位置有关的数据。 创建概率模型以估计在窗口的区域中执行点击的概率。 根据概率模型的点击在与多个应用程序相关联的窗口内执行。 基于在多个应用程序的窗口内执行的点击的位置来创建点击分发模型。 根据点击分布模型的点击在与正在测试的应用程序相关联的窗口内执行。

Patent Agency Ranking