Abstract:
A system for measuring one or more physical properties of cementitious material is operable to cure a slurry of cementitious material under desired conditions of temperature and pressure. Particularly, the system may be operable to cure the slurry under a temperature and pressure expected to be experienced downhole. The system may also be used to determine properties of the cured cementitious material, such as maximum yield strength and shear bond strength at the desired temperature and pressure. The desired conditions of temperature and pressure may be applied both during curing and testing of the cementitious material.
Abstract:
A system and method to model and analyze the mixing energies of high-yielding non-Newtonian fluids to prevent chemical lost circulation is disclosed. Laboratory tests are performed under varying conditions from which data on the mixing energies needed to optimize the use of high-yielding non-Newtonian fluids to prevent lost circulation is obtained. This data is then applied to a non-linear mathematical modeling system that is capable of scaling the data to give a dimensionless value. This value can be combined with historic information to predict optimal flow rates and mixtures to prevent chemical lost circulation. This data may be verified by means of simulation, lab testing, or application to a full-size well.
Abstract:
A system and method to model and analyze the mixing energies of high-yielding non-Newtonian fluids to prevent chemical lost circulation. Laboratory tests are performed under varying conditions from which data on the mixing energies needed to optimize the use of high-yielding non-Newtonian fluids to prevent lost circulation is obtained. This data is then applied to a non-linear mathematical modeling system that is capable of scaling the data to give a dimensionless value. This value can be combined with historic information to predict optimal flow rates and mixtures to prevent chemical lost circulation. This data may be verified by means of simulation, lab testing, or application to a full-size well.
Abstract:
A hydraulic control and actuation system for downhole tools. In a described embodiment, a hydraulic control and actuation system includes an internal chamber serving as a low pressure region and a well annulus serving as an energy source. A valve assembly provides selective fluid communication between alternating opposite sides of a piston and each of the energy source and low pressure region. Displacement of the piston operates a well tool. Operation of the valve assembly is controlled via telemetry between a remote location and an electronic circuit of the system.
Abstract:
A system and method to model and analyze the mixing energies of high-yielding non-Newtonian fluids to prevent chemical lost circulation is disclosed. Laboratory tests are preformed under varying conditions from which data on the mixing energies needed to optimize the use of high-yielding non-Newtonian fluids to prevent lost circulation is obtained. This data is then applied to a non-linear mathematical modeling system that is capable of scaling the data to give a dimensionless value. This value can be combined with historic information to predict optimal flow rates and mixtures to prevent chemical lost circulation. This data may be verified by means of simulation, lab testing, or application to a full-size well.
Abstract:
A device for and method of testing fluid compatibility may include placing a first fluid in a fixed-volume testing chamber and placing a second fluid in a sample chamber. The method may also include heating the fixed-volume testing chamber to about a temperature of a subterranean environment and pressurizing the fixed-volume testing chamber to about a pressure of the subterranean environment. The method may further include determining, at a temperature and pressure of about the temperature and pressure of the subterranean environment, a first rheology value of the fluid within the fixed-volume testing chamber, moving a portion of the second fluid from sample chamber into the fixed-volume testing chamber, and determining, at a temperature and pressure of about the temperature and pressure of the subterranean environment, a second rheology value of the fluid within the fixed-volume testing chamber.
Abstract:
A method of servicing a wellbore in contact with a subterranean formation, comprising: placing a wellbore servicing fluid comprising a crosslinkable polymer system and a filler into a lost circulation zone within the wellbore. A method of blocking the flow of fluid through a lost circulation zone in a subterranean formation comprising placing a first composition comprising a packing agent into the lost circulation zone, placing a second composition comprising a crosslinkable polymer system and a filler into the lost circulation zone, and allowing the compositions to set into place.
Abstract:
A system and method to model and analyze the mixing energies of high-yielding non-Newtonian fluids to prevent chemical lost circulation is disclosed. Laboratory tests are preformed under varying conditions from which data on the mixing energies needed to optimize the use of high-yielding non-Newtonian fluids to prevent lost circulation is obtained. This data is then applied to a non-linear mathematical modeling system that is capable of scaling the data to give a dimensionless value. This value can be combined with historic information to predict optimal flow rates and mixtures to prevent chemical lost circulation. This data may be verified by means of simulation, lab testing, or application to a full-size well.
Abstract:
A system for measuring one or more physical properties of cementitious material is operable to cure a slurry of cementitious material under desired conditions of temperature and pressure. Particularly, the system may be operable to cure the slurry under a temperature and pressure expected to be experienced downhole. The system may also be used to determine properties of the cured cementitious material, such as maximum yield strength and shear bond strength at the desired temperature and pressure. The desired conditions of temperature and pressure may be applied both during curing and testing of the cementitious material.