Abstract:
The present invention relates to a multiple catalyst system for preparing unsaturated aldehydes and acids from reactive hydrocarbons at high reactive hydrocarbon space velocity conditions. The present invention also relates to a process for preparing unsaturated aldehydes and acids from reactive hydrocarbons using the multiple catalyst system at high reactive hydrocarbon space velocity conditions. In one embodiment, the multiple catalyst system is utilized in a vapor phase catalytic oxidation reaction process which produces acrolein and acrylic acid from propylene at high reactive hydrocarbon space velocity conditions.
Abstract:
The present invention provides a method for minimizing the decomposition of cyanohydrins in exothermic chemical reactions involving cyanohydrins. The method comprises providing a reaction medium and reactants to a tubular reactor having internal mixing means, mixing the reaction medium and reactants to form a homogenous reaction mixture, removing heat from the reaction process and reacting the reactants to produce a mixed product having a bulk temperature. The method may further comprise cooling the reaction medium to a temperature from 1-10° C. cooler than the bulk temperature of the mixed product prior to providing the reaction medium to the tubular reactor.
Abstract:
In one embodiment, the invention provides a rupture disk assembly having a rupture disk and a rupture disk holder. The rupture disk holder has a first annular member downstream of the rupture disk, a second annular member upstream of the rupture disk, and an optional third annular member upstream of the second annular member. An outer peripheral portion of the rupture disk is sandwiched between the first and second annular members; and, if a third annular member is present, (a) the second annular member is sandwiched between the outer peripheral portion of the rupture disk and the third annular member, and (b) the third annular member includes a fluid port aimed at the rupture disk. However, if the third annular member is not present, the second annular member includes a fluid port aimed at the rupture disk. In another embodiment, the invention provides an equipment access assembly having an equipment access cover, an equipment access cover mount, and an annular member between the equipment access cover and cover mount. The annular member includes a fluid port aimed at the equipment access cover. In yet another embodiment, the invention provides a valve mounting assembly having a downstream valve mount, an upstream valve mount, a valve intermediate the downstream and upstream valve mounts, and an annular member intermediate the valve and the upstream valve mount. The annular member includes a fluid port aimed at the valve.
Abstract:
A process is provided herein for the high yield production of high purity glacial methacrylic acid (“HPMAA”) that is substantially pure, specifically 99% pure or greater with a water content of 0.05% or less. This improved process comprises providing a crude MAA stream and purifying the crude methacrylic acid stream in a series of successive distillation steps
Abstract:
In one embodiment, the invention provides a rupture disk assembly having a rupture disk and a rupture disk holder. The rupture disk holder has a first annular member downstream of the rupture disk, a second annular member upstream of the rupture disk, and an optional third annular member upstream of the second annular member. An outer peripheral portion of the rupture disk is sandwiched between the first and second annular members; and, if a third annular member is present, (a) the second annular member is sandwiched between the outer peripheral portion of the rupture disk and the third annular member, and (b) the third annular member includes a fluid port aimed at the rupture disk. However, if the third annular member is not present, the second annular member includes a fluid port aimed at the rupture disk. In another embodiment, the invention provides an equipment access assembly having an equipment access cover, an equipment access cover mount, and an annular member between the equipment access cover and cover mount. The annular member includes a fluid port aimed at the equipment access cover. In yet another embodiment, the invention provides a valve mounting assembly having a downstream valve mount, an upstream valve mount, a valve intermediate the downstream and upstream valve mounts, and an annular member intermediate the valve and the upstream valve mount. The annular member includes a fluid port aimed at the valve.
Abstract:
Provided herein are improved methods for producing methacrylic acid and methacrylate esters using combined or “integrated” processing steps including integrated hydrolysis, integrated cracking systems, and combinations thereof. In one embodiment, other aspects of an methacrylic acid and methacrylate ester production trains are integrated. Also provided are methods to purify crude methacrylic acid streams to form glacial methacrylic acid that is at least 95% pure.
Abstract:
The non-routine (e.g., emergency) shutdown of a chemical reaction process is achieved by a method of safely operating a chemical reaction process which comprises the steps of detecting an undesirable condition capable of affecting the process, minimizing the reaction of the reactants, and maintaining a flow of materials through the reaction zones of the process such that the reaction mixture is displaced from the reaction zones. The flow of materials may be maintained for a period of time such that the substantially all of the reaction mixture is displaced from the reaction zones, thereby flushing the reaction zones. The reaction mixture may then be purged to an ancillary vessel, such as an absorber.
Abstract:
A method is provided herein for purifying (meth)acrylic acid to provide a purified (meth)acrylic acid product having a low aldehyde concentration and not more than 0.2 wt % water. One embodiment of the method includes distilling (meth)acrylic acid in the presence of an aldehyde treating compound. Another embodiment of the method includes also distilling crude (meth)acrylic acid in the presence of a reactive drying agent. (Meth) acrylic acid produced in this manner is especially suitable for use in specialty (meth)acrylic acid polymers, such as for example superabsorbent polymers, binders, and ethylene-(M)AA copolymers.
Abstract:
A process is provided herein for the high yield production of high purity glacial methacrylic acid (“HPMAA”) that is substantially pure, specifically 99% pure or greater, with water content of 0.05% or less and low levels of other impurities, including HIBA, acrylic acid, MOMPA, methacrolein and others. This improved process comprises providing a crude MAA stream and purifying the crude methacrylic acid stream in a series of successive distillation steps involving two distillation columns. The inventive process is capable producing high purity methacrylic acid product that is especially suitable for the production of specialty MAA polymers.
Abstract:
Separations processes and apparati capable of purifying thermally sensitive materials at high capacity. An apparatus having a rectification section and a stripping section with the stripping section having a stripping tray with 5 to 50% open area, a pressure drop from 0.02 psi to 0.2 psi and a tray efficiency during operation of the column which is equal to or greater than 20%.