Abstract:
A hydrocarbon conversion process such as an auto-thermal cracking process in which a hydrocarbon feed and a molecular oxygen-containing gas are contacted in a reaction zone in the presence of a catalyst to produce an outlet stream having an oxygen concentration which is at, near or above the flammable limit and in which process a loss of reaction is detected and used as a signal to activate means for mitigating the risk of explosion downstream of the reaction zone. The loss of reaction may be detected for example by a sudden increase in oxygen concentration in the outlet stream and/or a sudden drop in temperature of the outlet stream.
Abstract:
This invention is directed to a system and a process for protecting a gas purification system from damage comprising passing a stream of impure gas through a catalyst bed and measuring the temperature difference before and after the catalyzed bed reaction through a data analyzer to determine the impurity of the gas prior to controlling the feed of impure gas into or out of a reactor for producing a purified gas. In a preferred embodiment, the catalytic beds may be in parallel form, and the plurality of temperature measurements before and after the catalytic beds is considered by a data analyzer for controlling the impure gas for feeding into the purification reactor.
Abstract:
The present invention relates to a nozzle for the injection of a liquid under pressure (3), comprising a vertical feed pipe (1) surmounted by a hollow head (3), the liquid under pressure being conducted between the outer wall (4) of the vertical feed pipe (1) and an inner tube (5), the upper part of the nozzle comprising at least one lateral orifice (6) for expelling the liquid under pressure (3). This nozzle is characterized in that the upper end of the inner tube (5) of the vertical feed pipe (1) emerges at a height above the lateral orifice(s) (6), thereby making it possible, when stopping the injection of the liquid under pressure (3), to introduce a gas under pressure (8) via the inner tube (5) of the vertical feed pipe (1). which generates an overpressure in the upper part of the nozzle in order, on the one hand, to lower the level of the liquid (9) under pressure (3) below the lateral orifice(s) (6) and, on the other hand, to prevent any backflow of solids, liquids and/or gases, from the medium into which the liquid under pressure (3) is injected. towards the inside of the nozzle.
Abstract:
A chemical reaction hazard analysis method is disclosed. Safety data and preventive measures of a chemical reaction are obtained through analysis of material stability, reaction process hazards and reaction runaway. The method can shorten a distance from laboratory to industrialization and realize an organic combination and application of technology, safety and engineer. The data obtain by the method can provide underlying basic data for process design, engineer amplification and the like, and lay a foundation for realizing process safety, improving quality and increasing efficiency.
Abstract:
A method for restraining a chemical discharge comprising (a) deploying a binding agent into a receptacle containing a hazardous material in a liquid state upon the occurrence of at least one predetermined event that increases the risk of accidentally discharging or leaking the hazardous material from the receptacle; and (b) contacting the hazardous material with the binding agent to form a composition comprising at least a portion of the hazardous material and the binding agent and having at least one property selected from a solid or semisolid state, a viscosity greater than the viscosity of the hazardous material at ambient conditions, a vapor pressure lower than the vapor pressure of the hazardous material at ambient conditions, and a surface tension greater that the surface tension of the hazardous material.
Abstract:
A method for attenuating deflagration pressure produced by combustion of combustible gas in a defined region of a process vessel. The method generally comprises selecting and placing attenuating material in the defined region of the process vessel, wherein the selected attenuating material maintains its physical shape under the operating conditions. The attenuating material should occupy at least 20% of the volume of the defined region of the process vessel. Use of the inventive method may be beneficially applied for the safe operation of oxidation reactors with flammable, high hydrocarbon concentration feeds in order to attain increased productivity. The invention also provides a tubular reactor adapted for attenuation of deflagration pressure resulting from combustion of combustible gas in a defined region therein, wherein the defined region of the tubular reactor comprises attenuating material selected in accordance with the aforesaid method for attenuating deflagration pressure and which have a plurality of components which are placed such that void spaces and open pathways between the components are minimized. A method for performing gas phase reactions safely under flammable operating conditions is also provided, wherein a gas feed composition comprising a hydrocarbon and oxygen is subjected reaction in a reaction vessel having attenuating materials therein and the reaction is conducted at a temperature and a pressure which render the reaction system flammable. By using the inventive apparatus, full pressure containment may be achieved, thereby eliminating the need for emergency pressure relief devices.
Abstract:
The present invention provides a process for stopping continuous polymerization in which a raw material monomer is polymerized in a reaction vessel by continuously feeding the raw material monomer and a polymerization initiator in the reaction vessel, which process comprises the steps of, in the midst of the polymerization reaction, stopping feeding of the polymerization initiator to the reaction vessel with keeping stirring in the reaction vessel; and adjusting a feed flow rate of the raw material monomer to the reaction vessel so that a temperature T1 (° C.) in the reaction vessel and a temperature T2 (° C.) of an external wall thereof satisfy a relation represented by the formula: T2−20≦T1≦T2+20.
Abstract:
The invention relates to a method for monitoring exothermic reactions in a reactor, in which one or more starting materials react exothermically to give at least one product, and at least one gas is present in the reactor during operation as intended or during a runaway, comprising the following process: A) measurement and storage of an initial temperature and an initial pressure in the reactor, B) calculation of the amount of products and starting materials present in the reactor from an energy balance, C) calculation of a maximum pressure raise that occurs on stepwise reaction of the amount of starting materials present, and D) calculation of a runaway pressure from the maximum pressure raise that occurs, calculated in step C), and the measured initial pressure stored in step A).
Abstract:
Method of processing and handling solids and mixtures capable of deflagration, in particular of processing materials capable of deflagration in the chemical and pharmaceutical industry, wherein the processing and handling is carried out in an environment under a reduced pressure of ≦500 mbara and the processing and/or handling comprises one or more process steps selected from the group consisting of filtration, milling, sieving, mixing, homogenization, granulation, compacting, packaging, drying, storage and transport in a transport container and other steps in apparatuses having mechanical internals.
Abstract:
The present invention relates to a catalyst system, an oxidation reactor comprising the same, and a method for producing an acrolein and an acrylic acid by using the same. By using the catalyst system according to the present invention, when acrolein and acrylic acid are produced, since heat accumulation in a catalyst layer may be effectively prevented, catalyst deterioration may be prevented, and the catalyst may be stably used for a long period of time. In addition, an acrolein and an acrylic acid may be produced at high selectivity and high yield.