Abstract:
An automotive vehicle may include one or more controllers, a braking system and an electric machine. The one or more controllers may be configured to determine whether the vehicle is about to roll over. The braking system may be configured to apply a braking torque for a time period, under the command of the one or more controllers, to a front traction wheel to cause the front traction wheel to skid or slide relative to a road if the vehicle is about to roll over. The electric machine may be configured to generate a propulsion torque, under the command of the one or more controllers, during the time period.
Abstract:
A control system (18) for an automotive vehicle (10) has a first roll condition detector (64A), a second roll condition detector (64B), a third roll condition detector (64C), and a controller (26) that uses the roll condition generated by the roll condition detectors (64A-C) to determine a wheel lift condition. Other roll condition detectors may also be used in the wheel lift determination. The wheel lift conditions may be active or passive or both.
Abstract:
A control system (18) for an automotive vehicle (10) has a first roll condition detector (64A), a second roll condition detector (64B), a third roll condition detector (64C), and a controller (26) that uses the roll condition generated by the roll condition detectors (64A-C) to determine a wheel lift condition. Other roll condition detectors may also be used in the wheel lift determination. The wheel lift conditions may be active or passive or both.
Abstract:
A method for preventing a valve orifice from switching to the small size when a high build gradient is required includes briefly bleeding off a small amount of fluid at the upstream side of the valve. This momentarily reduces the pressure difference when beginning the pressure build. After the valve is opened with the large orifice, the fluid flow through the valve prevents a high pressure difference. The resulting build with the large orifice has the maximum pressure gradient.
Abstract:
A roll control system (16) for an automotive vehicle (10) is used to actively detect if one of the plurality of the driven wheels (12) is lifted. The system generates a pressure request to determine if the wheel has lifted. By comparing the change in wheel speed of a driven wheel to a change in wheel speed threshold the wheel lift status can be determined. The wheel speed change threshold may be dependent upon various vehicle operating conditions such as powertrain torque, braking torque and/or longitudinal force on the vehicle.
Abstract:
A control system (18) for an automotive vehicle (10) has a first roll condition detector (64A), a second roll condition detector (64B), a third roll condition detector (64C), and a controller (26) that uses the roll condition generated by the roll condition detectors (64A-C) to determine a wheel lift condition. Other roll condition detectors may also be used in the wheel lift determination. The wheel lift conditions may be active or passive or both.
Abstract:
A brake pedal assembly 12 for a vehicle includes a pedal 14 and a foot pad 16 operatively engageable by the operator of a vehicle. The pedal assembly 12 also includes a collapsible push rod 22 connected between the pedal 14 and a hydraulic actuator assembly 20. The push rod 40 has a transverse slot 44 formed therein with a tapered surface 46 that increases in separation distance from a first end 48 toward a second end 50. A pin 42 is disposed in the second end of the slot 44 for connecting the push rod 40 to pedal 14 during normal vehicle operation. The pin 42 is movable toward the second end of slot 44 upon experiencing a force greater than a predetermined force threshold. In doing so, pin 42 deforms slot 44 of push rod 40 in an energy consuming manner to reduce the amount of force otherwise applied to pedal 14. Accordingly, the pedal assembly 12 reduces forces that may otherwise be transferred to the operator of the vehicle during a collision.
Abstract:
A roll control system (16) for an automotive vehicle (10) is used to actively detect if one of the plurality of the driven wheels (12) is lifted. The system generates a pressure request to determine if the wheel has lifted. By comparing the change in wheel speed of a driven wheel to a change in wheel speed threshold the wheel lift status can be determined. The wheel speed change threshold may be dependent upon various vehicle operating conditions such as powertrain torque, braking torque and/or longitudinal force on the vehicle.
Abstract:
An automotive vehicle may include one or more controllers, a braking system and an electric machine. The one or more controllers may be configured to determine whether the vehicle is about to roll over. The braking system may be configured to apply a braking torque for a time period, under the command of the one or more controllers, to a front traction wheel to cause the front traction wheel to skid or slide relative to a road if the vehicle is about to roll over. The electric machine may be configured to generate a propulsion torque, under the command of the one or more controllers, during the time period.
Abstract:
A roll control system (16) for an automotive vehicle (10) is used to actively detect if one of the plurality of the driven wheels (12) is lifted. The system generates a pressure request to determine if the wheel has lifted. By comparing the change in wheel speed of a driven wheel to a change in wheel speed threshold the wheel lift status can be determined. The wheel speed change threshold may be dependent upon various vehicle operating conditions such as powertrain torque, braking torque and/or longitudinal force on the vehicle.