Abstract:
An implantable medical electrical lead particularly for stimulation of the sacral nerves comprises a lead body extending between a distal end and a proximal end, and the distal end having at least one electrode of an electrode array extending longitudinally from the distal end toward the proximal end. A fixation mechanism is formed on or integrally with the lead body proximal to the electrode array that is adapted to be implanted in an engage subcutaneous tissue, particularly muscle tissue, to inhibit axial movement of the lead body and dislodgement of the stimulation electrodes.
Abstract:
An implantable medical electrical lead particularly for stimulation of the sacral nerves comprises a lead body extending between a distal end and a proximal end, and the distal end having at least one electrode of an electrode array extending longitudinally from the distal end toward the proximal end. The lead body at its proximal end may be coupled to a pulse generator, additional intermediate wiring, or other stimulation device. A fixation mechanism is formed on or integrally with the lead body proximal to the electrode array that is adapted to be implanted in and engage subcutaneous tissue, particularly muscle tissue, to inhibit axial movement of the lead body and dislodgement of the stimulation electrodes. The fixation mechanism comprises a M tine elements arrayed in a tine element array along a segment of the lead proximal to the stimulation electrode array. Each tine element comprises at least N flexible, pliant, tines, each tine having a tine width and thickness and extending through a tine length from an attached tine end to a free tine end. The attached tine end is attached to the lead body from a tine attachment site and supports the tine extending outwardly of the lead body and proximally toward the lead proximal end. The M×N tines are adapted to be folded inward against the lead body when fitted into and constrained by the lumen of an introducer such that the tine free ends of more distal tines of more distal tine elements are urged toward or alongside the attached tine ends of the adjacent more proximal tines of more proximal tine elements, and the folded tines do not overlap one another.
Abstract:
Methods and apparatus for implanting a stimulation lead in a patient's sacrum to deliver neurostimulation therapy that can reduce patient surgical complications, reduce patient recovery time, and reduce healthcare costs. A surgical instrumentation kit for minimally invasive implantation of a sacral stimulation lead through a foramen of the sacrum in a patient to electrically stimulate a sacral nerve comprises a needle and a dilator and optionally includes a guide wire. The needle is adapted to be inserted posterior to the sacrum through an entry point and guided into a foramen along an insertion path to a desired location. In one variation, a guide wire is inserted through a needle lumen, and the needle is withdrawn. The insertion path is dilated with a dilator inserted over the needle or over the guide wire to a diameter sufficient for inserting a stimulation lead, and the needle or guide wire is removed from the insertion path. The dilator optionally includes a dilator body and a dilator sheath fitted over the dilator body. The stimulation lead is inserted to the desired location through the dilator body lumen or the dilator sheath lumen after removal of the dilator body, and the dilator sheath or body is removed from the insertion path. If the clinician desires to separately anchor the stimulation lead, an incision is created through the entry point from an epidermis to a fascia layer, and the stimulation lead is anchored to the fascia layer. The stimulation lead can be connected to the neurostimulator to delivery therapies to treat pelvic floor disorders such as urinary control disorders, fecal control disorders, sexual dysfunction, and pelvic pain.
Abstract:
An implantable medical electrical lead particularly for stimulation of the sacral nerves comprises a lead body extending between a distal end and a proximal end, and the distal end having at least one electrode of an electrode array extending longitudinally from the distal end toward the proximal end. The lead body at its proximal end may be coupled to a pulse generator, additional intermediate wiring, or other stimulation device. A fixation mechanism is formed on or integrally with the lead body proximal to the electrode array that is adapted to be implanted in and engage subcutaneous tissue, particularly muscle tissue, to inhibit axial movement of the lead body and dislodgement of the stimulation electrodes. The fixation mechanism comprises a M tine elements arrayed in a tine element array along a segment of the lead proximal to the stimulation electrode array. Each tine element comprises at least N flexible, pliant, tines, each tine having a tine width and thickness and extending through a tine length from an attached tine end to a free tine end. The attached tine end is attached to the lead body from a tine attachment site and supports the tine extending outwardly of the lead body and proximally toward the lead proximal end. The M×N tines are adapted to be folded inward against the lead body when fitted into and constrained by the lumen of an introducer such that the tine free ends of more distal tines of more distal tine elements are urged toward or alongside the attached tine ends of the adjacent more proximal tines of more proximal tine elements, and the folded tines do not overlap one another.
Abstract:
An implantable medical electrical lead particularly for stimulation of the sacral nerves comprises a lead body extending between a distal end and a proximal end, and the distal end having at least one electrode of an electrode array extending longitudinally from the distal end toward the proximal end. The lead body at its proximal end may be coupled to a pulse generator, additional intermediate wiring, or other stimulation device. A fixation mechanism is formed on or integrally with the lead body proximal to the electrode array that is adapted to be implanted in and engage subcutaneous tissue, particularly muscle tissue, to inhibit axial movement of the lead body and dislodgement of the stimulation electrodes. The fixation mechanism comprises a M tine elements arrayed in a tine element array along a segment of the lead proximal to the stimulation electrode array. Each tine element comprises at least N flexible, pliant, tines, each tine having a tine width and thickness and extending through a tine length from an attached tine end to a free tine end. The attached tine end is attached to the lead body from a tine attachment site and supports the tine extending outwardly of the lead body and proximally toward the lead proximal end. The M×N tines are adapted to be folded inward against the lead body when fitted into and constrained by the lumen of an introducer such that the tine free ends of more distal tines of more distal tine elements are urged toward or alongside the attached tine ends of the adjacent more proximal tines of more proximal tine elements, and the folded tines do not overlap one another.
Abstract:
An implantable medical electrical lead particularly for stimulation of the sacral nerves comprises a lead body extending between a distal end and a proximal end, and the distal end having at least one electrode of an electrode array extending longitudinally from the distal end toward the proximal end. The lead body at its proximal end may be coupled to a pulse generator, additional intermediate wiring, or other stimulation device. A fixation mechanism is formed on or integrally with the lead body proximal to the electrode array that is adapted to be implanted in and engage subcutaneous tissue, particularly muscle tissue, to inhibit axial movement of the lead body and dislodgement of the stimulation electrodes. The fixation mechanism comprises a M tine elements arrayed in a tine element array along a segment of the lead proximal to the stimulation electrode array. Each tine element comprises at least N flexible, pliant, tines, each tine having a tine width and thickness and extending through a tine length from an attached tine end to a free tine end. The attached tine end is attached to the lead body from a tine attachment site and supports the tine extending outwardly of the lead body and proximally toward the lead proximal end. The M×N tines are adapted to be folded inward against the lead body when fitted into and constrained by the lumen of an introducer such that the tine free ends of more distal tines of more distal tine elements are urged toward or alongside the attached tine ends of the adjacent more proximal tines of more proximal tine elements, and the folded tines do not overlap one another.
Abstract:
An implantable medical electrical lead particularly for stimulation of the sacral nerves comprises a lead body extending between a distal end and a proximal end, and the distal end having at least one electrode of an electrode array extending longitudinally from the distal end toward the proximal end. The lead body at its proximal end may be coupled to a pulse generator, additional intermediate wiring, or other stimulation device. A fixation mechanism is formed on or integrally with the lead body proximal to the electrode array that is adapted to be implanted in and engage subcutaneous tissue, particularly muscle tissue, to inhibit axial movement of the lead body and dislodgement of the stimulation electrodes.
Abstract:
Described are implantable devices and methods for treating various disorders of the pelvic floor by means of electrical stimulation of the pudendal or other nerves, and optional means for delivering drugs in association therewith. A method of precisely positioning and implanting a medical electrical lead so as to provide optimal stimulation of the pudendal nerve or a portion thereof is also described. Placement of a stimulation lead next to or on the pudendal nerve may be performed using conventional prior art techniques through gross anatomical positioning, but usually does not result in truly optimal lead placement. One method of the present invention utilizes neurophysiological monitoring to assess the evoked responses of the pudendal nerve, and thereby provide a method for determining the optimal stimulation site. Additionally, one or more electrical stimulation signals are applied, and optionally one or more drugs are infused, injected or otherwise administered, to appropriate portions of a patient's pelvic floor and pudendal nerve or portions thereof in an amount and manner effective to treat a number of disorders, including, but not limited to, urinary and/or fecal voiding dysfunctions such as constipation, incontinence disorders such as urge frequency and urinary retention disorders, sexual dysfunctions such as orgasmic and erectile dysfunction, pelvic pain, prostatitis, prostatalgia and prostatodynia.
Abstract:
An implantable medical electrical lead comprises a lead body extending between a distal end and a proximal end, and the distal end having at least one electrode of an electrode array extending longitudinally from the distal end toward the proximal end. The lead body at its proximal end may be coupled to a pulse generator, additional intermediate wiring, or other stimulation device. A fixation mechanism is formed on or integrally with the lead body proximal to the electrode array that is adapted to be implanted in and engage subcutaneous tissue, particularly muscle tissue, to inhibit axial movement of the lead body and dislodgement of the stimulation electrodes. The fixation mechanism comprises a plurality of tine elements arrayed in a tine element array along a segment of the lead.
Abstract:
An implantable medical electrical lead comprises a lead body extending between a distal end and a proximal end, and the distal end having at least one electrode of an electrode array extending longitudinally from the distal end toward the proximal end. The lead body at its proximal end may be coupled to a pulse generator, additional intermediate wiring, or other stimulation device. A fixation mechanism is formed on or integrally with the lead body proximal to the electrode array that is adapted to be implanted in and engage subcutaneous tissue, particularly muscle tissue, to inhibit axial movement of the lead body and dislodgement of the stimulation electrodes. The fixation mechanism comprises a plurality of tine elements arrayed in a tine element array along a segment of the lead.