Abstract:
A support center receives an error message from a remote storage system indicating that an error, such as a kernel panic, has occurred on the remote storage system. The error message is processed to determine the type of error, whether the type of error is known and whether a solution is known for the type of error. If the type of error is unknown, a core file upload request is automatically generated and sent to the remote storage system.
Abstract:
A remote management module receives a command from a support server in response to the remote management module initiating a first secure, authenticated connection with the support server, wherein the remote management module is integrated with, and monitors a condition of, a processing system. The remote management module executes the command to generate a result that provides diagnostic data about the processing system. The remote management module reports the result to the support server upon the remote management module initiating a second secure, authenticated connection with the support server.
Abstract:
Thermal conditions within a computer unit are monitored. A system-level temperature sensor responds to intake cooling air. A subsystem-level temperature sensor responds to the temperature of a subsystem-level component, preferably a motherboard or a backplane. When the temperature sensed by of the system-level temperature sensor falls outside of a critical limit, it is determined whether the temperature sensed by the subsystem-level temperature sensor generally correlates with the temperature sensed by the system-level temperature sensor. If there is no correlation, the operation of the computer unit is continued.
Abstract:
A core file that may be generated when a data storage system encounters a problem can be automatically and securely sent to a remote (e.g., offsite) support enterprise. Moreover, given the size of such files and the additional requirements associated with sending such files securely, the transmission of the core file may be monitored such that, if a problem occurs during the transmission, the pieces of the file that have been successfully transmitted are not resent, but merely those pieces that still need to be (successfully) transmitted. In this manner, the time and resources required to securely transmit such large files are more efficiently utilized.
Abstract:
Thermal conditions within a computer unit are monitored. A system-level temperature sensor responds to intake cooling air. A subsystem-level temperature sensor responds to the temperature of a subsystem-level component, preferably a motherboard or a backplane. When the temperature sensed by of the system-level temperature sensor falls outside of a critical limit, it is determined whether the temperature sensed by the subsystem-level temperature sensor generally correlates with the temperature sensed by the system-level temperature sensor. If there is no correlation, the operation of the computer unit is continued.
Abstract:
A method is provided for transmitting data packets over a bi-directional contention and reservation based network. The network includes an operably linked system controller for receiving upstream channel packets and originating downstream channel packets. At least one operably linked remote terminal is included for receiving the downstream channel packets and originating the upstream channel packets. The system controller provides periodically allocated grants to the at least one remote terminal in the downstream channel for scheduling data packet transfers in the upstream channel. The periodically allocated grants have a fixed bandwidth size. The system controller also provides dynamically allocated grants to the at least one remote terminal in the downstream channel upon request of the at least one remote terminal for scheduling data packet transfers in the upstream channel. The dynamically allocated grants are of a requested bandwidth size. The bandwidth size of a data packet of a stream of packets to be transmitted from the at least one remote terminal through the upstream channel is determined and if it is greater than the size of the periodically allocated grant a dynamically allocated grant is requested. The dynamically allocated grant is requested to be of a bandwidth size equivalent to the bandwidth size by which the data packet exceeds the size of the periodically allocated grant. A first portion of the data packet is transmitted in response to the periodically allocated grant along with the dynamically allocated grant request. The remaining portion of the data packet is transmitted in response to a next available grant.