Abstract:
A method for encoding and decoding codes of constant weight that is based on conjugate dissections, which progressively modifies element values of an input vector to satisfy the constraint that each encoded symbol is to comprise integer component elements even when the encoded symbol is generated through processing that involved permuting.
Abstract:
The present invention provides a method, a computer medium, and a device for a two stage S_Random interleaver that is constructed based on two optimization criteria. The distance spectrum properties of the code are maximized by designing an interleaver that increases the minimum effective free distance of the code. In addition, the interleaver is designed to reduce the correlation properties of the extrinsic information that is fed into the next stage decoder. Thus, the present invention utilizes the reduced correlation properties to provide a more efficient S-random interleaver with increased iterations, thus maximizing the bit error rate (BER) performance of the code with respect to iterative decoding.
Abstract:
A method that employs a piecewise linear algorithm, P, to map m-dimensional symbols into code tuples, followed by the construction of codes of weight m from the code tuples. To reverse the operation, constant weight codes are converted to code tuples, and a reverse piecewise linear algorithm P′ is used to map the code tuples into symbols, from which data is recovered. The m-dimensional symbols are obtained from mapping of input data into the symbols, which are contained within an m-dimensional parallelopiped, with each coordinate having a different span but the symbols along each of the coordinate are equally spaced apart. The code tuples, which are obtained by employing process P, are contained within an m-dimensional simplex.
Abstract:
Patient disease is diagnosed and/or treated using electronic data communications between not only the physician and his/her patient, but via the use of electronic data communications between the physician and one or more entities which can contribute to the patient's diagnosis and/or treatment, such electronic data communications including information that was priorly received electronically from the patient and/or was developed as a consequence of an electronic messaging interaction that occurred between the patient and the physician. Such other entities illustratively include a medical diagnostic center and an epidemiological database computer facility which collects epidemiological transaction records from physicians, hospitals and other institutions which have medical facilities, such as schools and large businesses. The epidemiological transaction record illustratively includes various medical, personal and epidemiological data relevant to the patient and his/her present symptoms, including test results, as well as the diagnosis, if one has already been arrived at by the e-doc. The epidemiological database computer facility can correlate this information with the other epidemiological transaction records that it receives over time in order to help physicians make and/or confirm diagnoses as well as to identify and track epidemiological events and/or trends.