Abstract:
Acoustic Voice Activity Detection (AVAD) methods and systems are described. The AVAD methods and systems, including corresponding algorithms or programs, use microphones to generate virtual directional microphones which have very similar noise responses and very dissimilar speech responses. The ratio of the energies of the virtual microphones is then calculated over a given window size and the ratio can then be used with a variety of methods to generate a VAD signal. The virtual microphones can be constructed using either an adaptive or a fixed filter.
Abstract:
The invention is a method for real-time estimation of the instantaneous engine speed produced by each cylinder of an internal-combustion engine, from an instantaneous engine speed measurement at the end of the engine transmission system. A physical model, representing in real time the dynamics of the transmission system according to the crankshaft angle and to coefficients of a Fourier series decomposition of the instantaneous speed produced by each cylinder, is constructed. These coefficients are determined in real time from coupling between the model and an adaptive type non-linear estimator. The instantaneous speed produced by each cylinder is then deduced from these coefficients. The mean torque produced by each cylinder can also be deduced therefrom. An application is: engine controls.
Abstract:
Systems and methods to reduce the negative impact of wind on an electronic system include use of a first detector that receives a first signal and a second detector that receives a second signal. A voice activity detector (VAD) coupled to the first detector generates a VAD signal when the first signal corresponds to voiced speech. A wind detector coupled to the second detector correlates signals received at the second detector and derives from the correlation wind metrics that characterize wind noise that is acoustic disturbance corresponding to at least one of air flow and air pressure in the second detector. The wind detector controls a configuration of the second detector according to the wind metrics. The wind detector uses the wind metrics to dynamically control mixing of the first signal and the second signal to generate an output signal for transmission.
Abstract:
Systems and methods to reduce the negative impact of wind on an electronic system include use of a first detector that receives a first signal and a second detector that receives a second signal. A voice activity detector (VAD) coupled to the first detector generates a VAD signal when the first signal corresponds to voiced speech. A wind detector coupled to the second detector correlates signals received at the second detector and derives from the correlation wind metrics that characterize wind noise that is acoustic disturbance corresponding to at least one of air flow and air pressure in the second detector. The wind detector controls a configuration of the second detector according to the wind metrics. The wind detector uses the wind metrics to dynamically control mixing of the first signal and the second signal to generate an output signal for transmission.
Abstract:
The invention relates to a method and a device for controlling the production of a mixture of components, especially a mixture with premix dead volumes.The method and the device according to the invention ensure multivariable regulation feedback by a dynamic observer providing an estimate in real time of the properties of the components of the mixture, said estimate being sufficient to guarantee the effectiveness of the feedback loop. Thus, the desired properties of the mixture are guaranteed despite large uncertainties in the properties of the components on the one hand, and partial knowledge of the mixing process on the other.
Abstract:
A voice activity detector (VAD) combines the use of an acoustic VAD and a vibration sensor VAD as appropriate to the conditions a host device is operated. The VAD includes a first detector receiving a first signal and a second detector receiving a second signal. The VAD includes a first VAD component coupled to the first and second detectors. The first VAD component determines that the first signal corresponds to voiced speech when energy resulting from at least one operation on the first signal exceeds a first threshold. The VAD includes a second VAD component coupled to the second detector. The second VAD component determines that the second signal corresponds to voiced speech when a ratio of a second parameter corresponding to the second signal and a first parameter corresponding to the first signal exceeds a second threshold.
Abstract:
Method of controlling the active regeneration of a particulate filter through dynamic control of the temperature at the outlet of an oxidation catalyst.A control law is defined for a hydrocarbon flow rate at the oxidation catalyst inlet, by means of the ratio between a temperature demand and a gain. The gain can be corrected so as to take account of the transient phenomena that occur in the oxidation catalyst during a gas flow rate variation. The temperature demand can comprise a precompensation term to compensate for the effects of a temperature variation at the oxidation catalyst inlet. The temperature demand can comprise a feedback term calculated by a controller whose parameters are automatically calculated by means of a physical model of the catalyst, during operating conditions variations. Any combination of these terms allows to define a suitable control law. Finally, the hydrocarbon flow rate is modified by applying the control law so that the temperature of the gas leaving said catalyst respects a set point temperature.Application: engine control.
Abstract:
The invention relates to a method and a device for controlling the production of a mixture of components, especially a mixture with premix dead volumes.The method and the device according to the invention ensure multivariable regulation feedback by a dynamic observer providing an estimate in real time of the properties of the components of the mixture, said estimate being sufficient to guarantee the effectiveness of the feedback loop. Thus, the desired properties of the mixture are guaranteed despite large uncertainties in the properties of the components on the one hand, and partial knowledge of the mixing process on the other.
Abstract:
A voice activity detector (VAD) combines the use of an acoustic VAD and a vibration sensor VAD as appropriate to the conditions a host device is operated. The VAD includes a first detector receiving a first signal and a second detector receiving a second signal. The VAD includes a first VAD component coupled to the first and second detectors. The first VAD component determines that the first signal corresponds to voiced speech when energy resulting from at least one operation on the first signal exceeds a first threshold. The VAD includes a second VAD component coupled to the second detector. The second VAD component determines that the second signal corresponds to voiced speech when a ratio of a second parameter corresponding to the second signal and a first parameter corresponding to the first signal exceeds a second threshold.
Abstract:
A user equipment (UE) operating in a wireless network receives a sequence of speech frames on a speech channel. The UE demodulates at least a portion of a speech frame of the sequence of received speech frames to produce a metric value. The UE discontinues processing of the speech frame and enters a low power discontinuous reception (DRX) mode if the metric value indicates absence of valid speech data, and ignores and does not demodulate at least the next remaining bursts of the speech frame after entering DRX mode.