摘要:
This invention relates to a vacuum vapor-deposition apparatus for forming vapor-deposited films on a base film, thereby to produce vapor-deposited films, and also to a method of producing vapor-deposited films. In the vacuum vapor-deposition apparatus, the synchronizing means equalizes the circumference velocity v1 of the coating roll and the circumference velocity v2 of the takeup guide roll. Hence, v1=v2. Therefore, the takeup guide roll never rubs the vapor-deposited layer provided on the surface of the film. This eliminates the possibility that the vapor-deposited layer has scratches. The vapor-deposited layer can therefore possess desired properties.
摘要:
This invention relates to a vacuum vapor-deposition apparatus for forming vapor-deposited films on a base film, thereby to produce vapor-deposited films, and also to a method of producing vapor-deposited films. In the vacuum vapor-deposition apparatus, the synchronizing means equalizes the circumference velocity v1 of the coating roll and the circumference velocity v2 of the takeup guide roll. Hence, v1=v2. Therefore, the takeup guide roll never rubs the vapor-deposited layer provided on the surface of the film. This eliminates the possibility that the vapor-deposited layer has scratches. The vapor-deposited layer can therefore possess desired properties.
摘要:
This invention relates to a source material for vapor deposition, which is useful for forming a magnesium oxide thin film by vacuum vapor deposition process, and to a method of forming a transparent barrier film by using the magnesium oxide source material. The source material is composed of a magnesium oxide having a bulk density of 2.5 g/ml or more. This magnesium oxide can be obtained by sintering or fusing magnesium oxide material. For producing a transparent barrier film having a gas barrier property, this magnesium oxide is vapor-deposited on a surface of a transparent plastic base film by means of vacuum vapor deposition. The volume shrinkage or cracking of the evaporation source material can be avoided, thereby stabilizing the evaporation and prolonging duration of the evaporation. Further, it is possible to utilize a high power of electron beam. Since the evaporation source material is substantially free from pore, the evacuation of gas from the evaporation apparatus can be finished within a short period of time, and the vacuum degree within the evaporation apparatus can be stabilized. Since there is no splash or scattering during the evaporation., a transparent barrier film which is uniform in thickness and free from pinhole can be obtained.